1
|
Joy A, Semwal S, Yethiraj A. Frequency-Dependent Microelectrophoresis Study of Colloids with Tunable Surface Charge. J Phys Chem Lett 2024; 15:3953-3961. [PMID: 38569021 DOI: 10.1021/acs.jpclett.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Nonaqueous poly(methyl methacrylate) (PMMA) colloidal suspensions in a solvent that is simultaneously matched in both density and refractive index have been important for real-space studies of colloidal self-assembly, but their complex electrostatic character remains largely unexplored. Electrophoresis is a powerful tool for determining the surface potential and charge of the colloidal suspension; however, because of refractive index matching, standard electrophoresis measurements are not feasible. We carry out microscope-based microelectrophoresis measurements on PMMA colloids in cyclohexyl bromide and cis-trans decalin to measure particle charge as a function of salt concentration in both DC and frequency-variable AC fields. The colloid charge depends on salt concentration and reverses sign near 0.35 μM, providing evidence that solution ions are actively modifying the colloid surface. The frequency dependence of the electrophoretic mobility yields the characteristic time scale for electric double-layer polarization and provides intriguing evidence for Manning condensation and polyion formation.
Collapse
Affiliation(s)
- Ashish Joy
- Department of Physics and Physical Oceanography, Memorial University, St. John's, NL A1B 3X7, Canada
| | - Shivani Semwal
- Department of Physics and Physical Oceanography, Memorial University, St. John's, NL A1B 3X7, Canada
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
2
|
Ahualli S, Bermúdez S, Carrique F, Jiménez ML, Delgado ÁV. AC Electrokinetics of Salt-Free Multilayered Polymer-Grafted Particles. Polymers (Basel) 2020; 12:E2097. [PMID: 32942664 PMCID: PMC7569943 DOI: 10.3390/polym12092097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022] Open
Abstract
Interest in the electrical properties of the interface between soft (or polymer-grafted) nanoparticles and solutions is considerable. Of particular significance is the case of polyelectrolyte-coated particles, mainly taking into account that the layer-by-layer procedure allows the control of the thickness and permeability of the layer, and the overall charge of the coated particle. Like in simpler systems, electrokinetic determinations in AC fields (including dielectric dispersion in the 1 kHz-1 MHz frequency range and dynamic electrophoresis by electroacoustic methods in the 1-18 MHz range) provide a large amount of information about the physics of the interface. Different models have dealt with the electrokinetics of particles coated by a single polymer layer, but studies regarding multi-layered particles are far scarcer. This is even more significant in the case of so-called salt-free systems; ideally, the only charges existing in this case consist of the charge in the layer(s) and the core particle itself, and their corresponding countercharges, with no other ions added. The aims of this paper are as follows: (i) the elaboration of a model for the evaluation of the electrokinetics of multi-grafted polymer particles in the presence of alternating electric fields, in dispersion media where no salts are added; (ii) to carry out an experimental evaluation of the frequency dependence of the dynamic (or AC) electrophoretic mobility and the dielectric permittivity of suspensions of polystyrene latex spherical particles coated with successive layers of cationic, anionic, and neutral polymers; and (iii) finally, to perform a comparison between predictions and experimental results, so that it can be demonstrated that the electrokinetic analysis is a useful tool for the in situ characterization of multilayered particles.
Collapse
Affiliation(s)
- Silvia Ahualli
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| | - Sara Bermúdez
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| | - Félix Carrique
- Department of Applied Physics I, School of Sciences, University of Málaga, 23071 Málaga, Spain;
| | - María L. Jiménez
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| | - Ángel V. Delgado
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain; (S.B.); (M.L.J.)
| |
Collapse
|
3
|
Ravnik M, Everts JC. Topological-Defect-Induced Surface Charge Heterogeneities in Nematic Electrolytes. PHYSICAL REVIEW LETTERS 2020; 125:037801. [PMID: 32745396 DOI: 10.1103/physrevlett.125.037801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
We show that topological defects in an ion-doped nematic liquid crystal can be used to manipulate the surface charge distribution on chemically homogeneous, charge-regulating external surfaces, using a minimal theoretical model. In particular, the location and type of the defect encodes the precise distribution of surface charges and the effect is enhanced when the liquid crystal is flexoelectric. We demonstrate the principle for patterned surfaces and charged colloidal spheres. More generally, our results indicate an interesting approach to control surface charges on external surfaces without changing the surface chemistry.
Collapse
Affiliation(s)
- Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Department of Condensed Matter Physics, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Jeffrey C Everts
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Hallett JE, Gillespie DAJ, Richardson RM, Bartlett P. Charge regulation of nonpolar colloids. SOFT MATTER 2018; 14:331-343. [PMID: 29164218 DOI: 10.1039/c7sm01825h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Individual colloids often carry a charge as a result of the dissociation (or adsorption) of weakly-ionized surface groups. The magnitude depends on the precise chemical environment surrounding a particle, which in a concentrated dispersion is a function of the colloid packing fraction η. Theoretical studies have suggested that the effective charge Zeff in regulated systems could, in general, decrease with increasing η. We test this hypothesis for nonpolar dispersions by determining Zeff(η) over a wide range of packing fractions (10-5 ≤ η ≤ 0.3) using a combination of small-angle X-ray scattering and electrophoretic mobility measurements. All dispersions remain entirely in the fluid phase regime. We find a complex dependence of the particle charge as a function of the packing fraction, with Zeff initially decreasing at low concentrations before finally increasing at high η. We attribute the non-monotonic density dependence to a crossover from concentration-independent screening at low η, to a high packing fraction regime in which counterions outnumber salt ions and electrostatic screening becomes η-dependent. The efficiency of charge stabilization at high concentrations may explain the unusually high stability of concentrated nanoparticle dispersions which has been reported.
Collapse
Affiliation(s)
- James E Hallett
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | | | | | | |
Collapse
|
5
|
Smith GN, Ahualli S, Delgado ÁV, Gillespie DAJ, Kemp R, Peach J, Pegg JC, Rogers SE, Shebanova O, Smith N, Eastoe J. Charging Poly(methyl Methacrylate) Latexes in Nonpolar Solvents: Effect of Particle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13543-13553. [PMID: 29064706 DOI: 10.1021/acs.langmuir.7b02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electrophoresis of a well-established model system of charged colloids in nonpolar solvents has been studied as a function of particle volume fraction at constant surfactant concentration. Dispersions of poly(12-hydroxystearic acid)-stabilized poly(methyl methacrylate) (PMMA) latexes in dodecane were prepared with added Aerosol OT surfactant as the charging agent. The electrophoretic mobility (μ) of the PMMA latexes is found to decrease with particle concentration. The particles are charged by a small molecule charging agent (AOT) at finite concentration, and this makes the origin of this decrease in μ unclear. There are two suggested explanations. The decrease could either be due to the reservoir of available surfactant being exhausted at high particle concentrations or the interactions between the charged particles at high particle number concentrations. Contrast-variation small-angle neutron scattering measurements of PMMA latexes and deuterated AOT-d34 surfactant in latex core contrast-matched solvent were used to study the former, and electrokinetic modeling was used to study the latter. As the same amount of AOT-d34 is found to be incorporated with the latexes at all volume fractions, the solvodynamic and electrical interactions between particles are determined to be the explanation for the decrease in mobility. These measurements show that, for small latexes, there are interactions between the charged particles at all accessible particle volume fractions and that it is necessary to account for this to accurately determine the electrokinetic ζ potential.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Silvia Ahualli
- Department of Applied Physics, School of Science, University of Granada , 18071 Granada, Spain
| | - Ángel V Delgado
- Department of Applied Physics, School of Science, University of Granada , 18071 Granada, Spain
| | - David A J Gillespie
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Roger Kemp
- Merck Chemicals Ltd, University Parkway , Chilworth, Southampton SO16 7QD, United Kingdom
| | - Jocelyn Peach
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Jonathan C Pegg
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Sarah E Rogers
- ISIS-STFC, Rutherford Appleton Laboratory , Chilton, Oxon OX11 0QX, United Kingdom
| | - Olga Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus , Chilton, Didcot OX11 0DE, United Kingdom
| | - Nathan Smith
- Merck Chemicals Ltd, University Parkway , Chilworth, Southampton SO16 7QD, United Kingdom
| | - Julian Eastoe
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
6
|
Smith GN, Finlayson SD, Rogers SE, Bartlett P, Eastoe J. Electrolyte-induced Instability of Colloidal Dispersions in Nonpolar Solvents. J Phys Chem Lett 2017; 8:4668-4672. [PMID: 28853903 DOI: 10.1021/acs.jpclett.7b01685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dispersions of poly(methyl methacrylate) (PMMA) latexes were prepared in a low dielectric, nonpolar solvent (dodecane) both with and without the oil-soluble electrolyte, tetradodecylammonium-tetrakis(3,5-bis(trifluoromethyl)phenyl)borate. For dispersions with a high concentration of background electrolyte, the latexes become colloidally unstable and sediment in a short period of time (<1 h). This is completely reversible upon dilution. Instability of the dispersions is due to an apparent attraction between the colloids, directly observed using optical tweezers by bringing optically trapped particles into close proximity. Simple explanations generally used by colloid scientists to explain loss of stability (charge screening or stabilizer collapse) are insufficient to explain this observation. This unexpected interaction seems, therefore, to be a consequence of the materials that can be dispersed in low dielectric media and is expected to have ramifications for studying colloids in such solvents.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Samuel D Finlayson
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Sarah E Rogers
- ISIS-STFC, Rutherford Appleton Laboratory , Chilton, Oxon OX11 0QX, United Kingdom
| | - Paul Bartlett
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Julian Eastoe
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
7
|
Hayden E, Aljabal Z, Yethiraj A. Frequency-Dependent Solvent Impedance and Colloid Microelectrophoresis Measurements in Partially Polar Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4781-4788. [PMID: 28441871 DOI: 10.1021/acs.langmuir.7b00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We carry out frequency-dependent solvent impedance measurements and alternating current (ac) colloid microelectrophoresis experiments in partially polar solvents in the low-frequency regime (0.25 Hz ≤ f ≤ 10 Hz). Solvent electrode polarization effects are quantified first in partially polar solvent mixtures containing bromocyclohexane (CHB). We find that the polarization capacitance from electrode polarization exhibits a clear power law behavior Cp = Cp0 f-m with power law exponent m = 0.25 ± 0.04. Once we account for electrode polarization effects, we are able to obtain quantitative mobilities in the low-frequency regime from our ac microelectrophoresis measurements; for these measurements, we use poly(methyl methacrylate colloids that are gravitationally confined to a plane while suspended in a low-polar solvent mixture of cis-trans decahydronapthalene and CHB. We find that the dimensionless electrophoretic mobility is constant, consistent with expectations for frequencies below the ion-diffusion frequency, and has a value E = 1.6 ± 0.4.
Collapse
Affiliation(s)
- Edward Hayden
- Department of Physics and Physical Oceanography, Memorial University , St. John's, Newfoundland A1B 3X7, Canada
| | - Zena Aljabal
- Department of Physics and Physical Oceanography, Memorial University , St. John's, Newfoundland A1B 3X7, Canada
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University , St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
8
|
Bakker HE, Besseling TH, Wijnhoven JEGJ, Helfferich PH, van Blaaderen A, Imhof A. Microelectrophoresis of Silica Rods Using Confocal Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:881-890. [PMID: 28045541 PMCID: PMC5348103 DOI: 10.1021/acs.langmuir.6b03863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/31/2016] [Indexed: 06/06/2023]
Abstract
The electrophoretic mobility and the zeta potential (ζ) of fluorescently labeled colloidal silica rods, with an aspect ratio of 3.8 and 6.1, were determined with microelectrophoresis measurements using confocal microscopy. In the case where the colloidal particles all move at the same speed parallel to the direction of the electric field, we record a xyz-stack over the whole depth of the capillary. This method is faster and more robust compared to taking xyt-series at different depths inside the capillary to obtain the parabolic flow profile, as was done in previous work from our group. In some cases, rodlike particles do not move all at the same speed in the electric field, but exhibit a velocity that depends on the angle between the long axis of the rod and the electric field. We measured the orientation-dependent velocity of individual silica rods during electrophoresis as a function of κa, where κ-1 is the double layer thickness and a is the radius of the rod associated with the diameter. Thus, we determined the anisotropic electrophoretic mobility of the silica rods with different sized double layers. The size of the double layer was tuned by suspending silica rods in different solvents at different electrolyte concentrations. We compared these results with theoretical predictions. We show that even at already relatively high κa when the Smoluchowski limiting law is assumed to be valid (κa > 10), an orientation dependent velocity was measured. Furthermore, we observed that at decreasing values of κa the anisotropy in the electrophoretic mobility of the rods increases. However, in low polar solvents with κa < 1, this trend was reversed: the anisotropy in the electrophoretic mobility of the rods decreased. We argue that this decrease is due to end effects, which was already predicted theoretically. When end effects are not taken into account, this will lead to strong underestimation of the experimentally determined zeta potential.
Collapse
|
9
|
Everts JC, Samin S, Elbers NA, van der Hoeven JES, van Blaaderen A, van Roij R. Colloid–oil–water-interface interactions in the presence of multiple salts: charge regulation and dynamics. Phys Chem Chem Phys 2017; 19:14345-14357. [DOI: 10.1039/c7cp01935a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The salt-induced dislodgement of charged colloidal particles from an oil–water interface is investigated theoretically and experimentally.
Collapse
Affiliation(s)
- J. C. Everts
- Institute for Theoretical Physics
- Center for Extreme Matter and Emergent Phenomena
- Utrecht University
- 3584 CC Utrecht
- The Netherlands
| | - S. Samin
- Institute for Theoretical Physics
- Center for Extreme Matter and Emergent Phenomena
- Utrecht University
- 3584 CC Utrecht
- The Netherlands
| | - N. A. Elbers
- Soft Condensed Matter
- Debye Institute for Nanomaterials Science
- Utrecht
- The Netherlands
| | | | - A. van Blaaderen
- Soft Condensed Matter
- Debye Institute for Nanomaterials Science
- Utrecht
- The Netherlands
| | - R. van Roij
- Institute for Theoretical Physics
- Center for Extreme Matter and Emergent Phenomena
- Utrecht University
- 3584 CC Utrecht
- The Netherlands
| |
Collapse
|
10
|
Li WW, Radacsi N, Kramer HJM, van der Heijden AEDM, Ter Horst JH. Solid Separation from a Mixed Suspension through Electric-Field-Enhanced Crystallization. Angew Chem Int Ed Engl 2016; 55:16088-16091. [PMID: 27860094 DOI: 10.1002/anie.201609832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 11/10/2022]
Abstract
When applied to a pure component suspension in an apolar solvent, a strong inhomogeneous electric field induces particle movement, and the particles are collected at the surface of one of the two electrodes. This new phenomenon was used to separately isolate two organic crystalline compounds, phenazine and caffeine, from their suspension in 1,4-dioxane. First, crystals of both compounds were collected at different electrodes under the influence of an electric field. Subsequent cooling crystallization enabled the immobilization and growth of the particles on the electrodes, which were separately collected after the experiment with purities greater than 91 %. This method can be further developed into a technique for crystal separation and recovery in complex multicomponent suspensions of industrial processes.
Collapse
Affiliation(s)
- Wei W Li
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Norbert Radacsi
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.,Current Address: School of Engineering, Institute for Materials and Processes, University of Edinburgh, EH9 3FB, Edinburgh, UK
| | - Herman J M Kramer
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Antoine E D M van der Heijden
- Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.,Energetic Materials, TNO, P.O. Box 45, 2280 AA, Rijswijk, The Netherlands
| | - Joop H Ter Horst
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| |
Collapse
|
11
|
Li WW, Radacsi N, Kramer HJM, van der Heijden AEDM, ter Horst JH. Solid Separation from a Mixed Suspension through Electric-Field-Enhanced Crystallization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei W. Li
- Process and Energy Department; Delft University of Technology; Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - Norbert Radacsi
- Process and Energy Department; Delft University of Technology; Leeghwaterstraat 39 2628 CB Delft The Netherlands
- Current Address: School of Engineering, Institute for Materials and Processes; University of Edinburgh; EH9 3FB Edinburgh UK
| | - Herman J. M. Kramer
- Process and Energy Department; Delft University of Technology; Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - Antoine E. D. M. van der Heijden
- Process and Energy Department; Delft University of Technology; Leeghwaterstraat 39 2628 CB Delft The Netherlands
- Energetic Materials; TNO, P.O. Box 45; 2280 AA Rijswijk The Netherlands
| | - Joop H. ter Horst
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), Technology and Innovation Centre; University of Strathclyde; 99 George Street Glasgow G1 1RD UK
| |
Collapse
|
12
|
Everts JC, van der Linden MN, van Blaaderen A, van Roij R. Alternating strings and clusters in suspensions of charged colloids. SOFT MATTER 2016; 12:6610-6620. [PMID: 27439990 DOI: 10.1039/c6sm01283c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the formation of alternating strings and clusters in a binary suspension of repulsive charged colloids with double layers larger than the particle size. Within a binary cell model we include many-body and charge-regulation effects under the assumption of a constant surface potential, and consider their repercussions on the two-particle interaction potential. We find that the formation of induced dipoles close to a charge-reversed state may explain the formation of these structures. Finally, we will touch upon the formation of dumbbells and small clusters in a one-component system, where the effective electrostatic interaction is always repulsive.
Collapse
Affiliation(s)
- J C Everts
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Evans DJ, Hollingsworth AD, Grier DG. Charge renormalization in nominally apolar colloidal dispersions. Phys Rev E 2016; 93:042612. [PMID: 27176357 DOI: 10.1103/physreve.93.042612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 06/05/2023]
Abstract
We present high-resolution measurements of the pair interactions between dielectric spheres dispersed in a fluid medium with a low dielectric constant. Despite the absence of charge control agents or added organic salts, these measurements reveal strong and long-ranged repulsions consistent with substantial charges on the particles whose interactions are screened by trace concentrations of mobile ions in solution. The dependence of the estimated charge on the particles' radii is consistent with charge renormalization theory and, thus, offers insights into the charging mechanism in this interesting class of model systems. The measurement technique, based on optical-tweezer manipulation and artifact-free particle tracking, makes use of optimal statistical methods to reduce measurement errors to the femtonewton frontier while covering an extremely wide range of interaction energies.
Collapse
Affiliation(s)
- Daniel J Evans
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
| | - Andrew D Hollingsworth
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
| | - David G Grier
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
| |
Collapse
|
14
|
Smith GN, Hallett JE, Eastoe J. Celebrating Soft Matter's 10th Anniversary: Influencing the charge of poly(methyl methacrylate) latexes in nonpolar solvents. SOFT MATTER 2015; 11:8029-8041. [PMID: 26369696 DOI: 10.1039/c5sm01190f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sterically-stabilized poly(methyl methacrylate) (PMMA) latexes dispersed in nonpolar solvents are a classic, well-studied system in colloid science. This is because they can easily be synthesized with a narrow size distribution and because they interact essentially as hard spheres. These PMMA latexes can be charged using several methods (by adding surfactants, incorporating ionizable groups, or dispersing in autoionizable solvents), and due to the low relative permittivity of the solvents (εr ≈ 2 for alkanes to εr ≈ 8 for halogenated solvents), the charges have long-range interactions. The number of studies of these PMMA particles as charged species has increased over the past ten years, after few studies immediately following their discovery. A large number of variations in both the physical and chemical properties of the system (size, concentration, surfactant type, or solvent, as a few examples) have been studied by many groups. By considering the literature on these particles as a whole, it is possible to determine the variables that have an effect on the charge of particles. An understanding of the process of charge formation will add to understanding how to control charge in nonaqueous solvents as well as make it possible to develop improved technologically relevant applications for charged polymer nanoparticles.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | | |
Collapse
|
15
|
Besseling TH, Hermes M, Kuijk A, de Nijs B, Deng TS, Dijkstra M, Imhof A, van Blaaderen A. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:194109. [PMID: 25922931 DOI: 10.1088/0953-8984/27/19/194109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Confocal microscopy in combination with real-space particle tracking has proven to be a powerful tool in scientific fields such as soft matter physics, materials science and cell biology. However, 3D tracking of anisotropic particles in concentrated phases remains not as optimized compared to algorithms for spherical particles. To address this problem, we developed a new particle-fitting algorithm that can extract the positions and orientations of fluorescent rod-like particles from three dimensional confocal microscopy data stacks. The algorithm is tailored to work even when the fluorescent signals of the particles overlap considerably and a threshold method and subsequent clusters analysis alone do not suffice. We demonstrate that our algorithm correctly identifies all five coordinates of uniaxial particles in both a concentrated disordered phase and a liquid-crystalline smectic-B phase. Apart from confocal microscopy images, we also demonstrate that the algorithm can be used to identify nanorods in 3D electron tomography reconstructions. Lastly, we determined the accuracy of the algorithm using both simulated and experimental confocal microscopy data-stacks of diffusing silica rods in a dilute suspension. This novel particle-fitting algorithm allows for the study of structure and dynamics in both dilute and dense liquid-crystalline phases (such as nematic, smectic and crystalline phases) as well as the study of the glass transition of rod-like particles in three dimensions on the single particle level.
Collapse
|
16
|
Switching plastic crystals of colloidal rods with electric fields. Nat Commun 2015; 5:3092. [PMID: 24446033 PMCID: PMC3905722 DOI: 10.1038/ncomms4092] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/11/2013] [Indexed: 11/08/2022] Open
Abstract
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Collapse
|
17
|
van der Linden MN, Stiefelhagen JCP, Heessels-Gürboğa G, van der Hoeven JES, Elbers NA, Dijkstra M, van Blaaderen A. Charging of poly(methyl methacrylate) (PMMA) colloids in cyclohexyl bromide: locking, size dependence, and particle mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:65-75. [PMID: 25535669 DOI: 10.1021/la503665e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We studied suspensions of sterically stabilized poly(methyl methacrylate) (PMMA) particles in the solvent cyclohexyl bromide (CHB; εr = 7.92). We performed microelectrophoresis measurements on suspensions containing a single particle species and on binary mixtures, using confocal microscopy to measure the velocity profiles of the particles. We measured the charge of so-called locked PMMA particles, for which the steric stabilizer, a comb-graft stabilizer of poly(12-hydroxystearic acid) (PHSA) grafted on a backbone of PMMA, was covalently bonded to the particle, and for unlocked particles, for which the stabilizer was adsorbed to the surface of the particle. We observed that locked particles had a significantly higher charge than unlocked particles. We found that the charge increase upon locking was due to chemical coupling of 2-(dimethylamino)ethanol to the PMMA particles, which was used as a catalyst for the locking reaction. For particles of different size we obtained the surface potential and charge from the electrophoretic mobility of the particles. For locked particles we found that the relatively high surface potential (∼ +5.1 kBT/e or +130 mV) was roughly constant for all particle diameters we investigated (1.2 μm < σ < 4.4 μm), and that the particle charge was proportional to the square of the diameter.
Collapse
Affiliation(s)
- Marjolein N van der Linden
- Soft Condensed Matter, Debye Institute for Nanomaterials Science , Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
van der Linden MN, van Blaaderen A, Dijkstra M. Effect of size polydispersity on the crystal-fluid and crystal-glass transition in hard-core repulsive Yukawa systems. J Chem Phys 2013; 138:114903. [DOI: 10.1063/1.4794918] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
19
|
|
20
|
Smith GN, Eastoe J. Controlling colloid charge in nonpolar liquids with surfactants. Phys Chem Chem Phys 2013. [DOI: 10.1039/c2cp42625k] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Vissers T, van Blaaderen A, Imhof A. Band formation in mixtures of oppositely charged colloids driven by an ac electric field. PHYSICAL REVIEW LETTERS 2011; 106:228303. [PMID: 21702638 DOI: 10.1103/physrevlett.106.228303] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 05/18/2023]
Abstract
We present experiments on pattern formation in a Brownian system of oppositely charged colloids driven by an ac electric field. Using confocal laser scanning microscopy we observe complete segregation of the two particle species into bands perpendicular to a field of sufficient strength when the frequency is in a well-defined range. Because of its Brownian nature the system spontaneously returns to the equilibrium mixture after the field is turned off. We show that band formation is linked to the time scale associated with collisions between particles moving in opposite directions.
Collapse
Affiliation(s)
- Teun Vissers
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|