1
|
Majka Z, Kwiecień K, Kaczor A. Vibrational Optical Activity of Amyloid Fibrils. Chempluschem 2024; 89:e202400091. [PMID: 38421108 DOI: 10.1002/cplu.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Amyloid fibrils are supramolecular systems showing distinct chirality at different levels of their complex multilayered architectures. Due to the regular long-range chiral organization, amyloid fibrils exhibit the most intense Vibrational Optical Activity (VOA) signal observed up to now, making VOA techniques: Vibrational Circular Dichroism (VCD) and Raman Optical Activity (ROA) very promising tools to explore their structures, handedness and intricate polymorphism. This concept article reviews up-to-date experimental studies on VOA applications to investigate amyloid fibrils highlighting its future potential in analyzing of these unique supramolecular systems, in particular in the context of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Zuzanna Majka
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| | - Karolina Kwiecień
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11 Str., Krakow, Poland
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 39 Zabłocie Str., 30-701, Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| |
Collapse
|
2
|
Peydayesh M, Boschi E, Donat F, Mezzenga R. Gold Recovery from E-Waste by Food-Waste Amyloid Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310642. [PMID: 38262611 DOI: 10.1002/adma.202310642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Demand for gold recovery from e-waste grows steadily due to its pervasive use in the most diverse technical applications. Current methods of gold recovery are resource-intensive, necessitating the development of more efficient extraction materials. This study explores protein amyloid nanofibrils (AF) derived from whey, a dairy industry side-stream, as a novel adsorbent for gold recovery from e-waste. To do so, AF aerogels are prepared and assessed against gold adsorption capacity and selectivity over other metals present in waste electrical and electronic equipment (e-waste). The results demonstrate that AF aerogel has a remarkable gold adsorption capacity (166.7 mg g-1) and selectivity, making it efficient and an adsorbent for gold recovery. Moreover, AF aerogels are efficient templates to convert gold ions into single crystalline flakes due to Au growth along the (111) plane. When used as templates to recover gold from e-waste solutions obtained by dissolving computer motherboards in suitable solvents, the process yields high-purity gold nuggets, constituted by ≈90.8 wt% gold (21-22 carats), with trace amounts of other metals. Life cycle assessment and techno-economic analysis of the process finally consolidate the potential of protein nanofibril aerogels from food side-streams as an environmentally friendly and economically viable approach for gold recovery from e-waste.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, CH-8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
3
|
Peydayesh M, Boschi E, Bagnani M, Tay D, Donat F, Almohammadi H, Li M, Usuelli M, Shiroka T, Mezzenga R. Hybrid Amyloid-Chitin Nanofibrils for Magnetic and Catalytic Aerogels. ACS NANO 2024; 18:6690-6701. [PMID: 38345899 DOI: 10.1021/acsnano.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In the quest for a sustainable and circular economy, it is essential to explore environmentally friendly alternatives to traditional petroleum-based materials. A promising pathway toward this goal lies in the leveraging of biopolymers derived from food waste, such as proteins and polysaccharides, to develop advanced sustainable materials. Here, we design versatile hybrid materials by hybridizing amyloid nanofibrils derived by self-assembly of whey, a dairy byproduct, with chitin nanofibrils exfoliated from the two distinct allomorphs of α-chitin and β-chitin, extracted from seafood waste. Various hydrogels and aerogels were developed via the hybridization and reassembly of these biopolymeric nanobuilding blocks, and they were further magnetized upon biomineralization with iron nanoparticles. The pH-phase diagram highlights the significant role of electrostatic interactions in gel formation, between positively charged amyloid fibrils and negatively charged chitin nanofibrils. Hybrid magnetic aerogels exhibit a ferromagnetic response characterized by a low coercivity (<50 Oe) and a high specific magnetization (>40 emu/g) at all temperatures, making them particularly suitable for superparamagnetic applications. Additionally, these aerogels exhibit a distinct magnetic transition, featuring a higher blocking temperature (200 K) compared to previously reported similar nanoparticles (160 K), indicating enhanced magnetic stability at elevated temperatures. Finally, we demonstrate the practical application of these hybrid magnetic materials as catalysts for carbon monoxide oxidation, showcasing their potential in environmental pollution control and highlighting their versatility as catalyst supports.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel Tay
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zürich, Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mingqin Li
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Toni Shiroka
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Kadu P, Gadhe L, Navalkar A, Patel K, Kumar R, Sastry M, Maji SK. Charge and hydrophobicity of amyloidogenic protein/peptide templates regulate the growth and morphology of gold nanoparticles. NANOSCALE 2022; 14:15021-15033. [PMID: 36194184 DOI: 10.1039/d2nr01942f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biomolecules are known to interact with metals and produce nanostructured hybrid materials with diverse morphologies and functions. In spite of the great advancement in the principles of biomimetics for designing complex nano-bio structures, the interplay between the physical properties of biomolecules such as sequence, charge, and hydrophobicity with predictable morphology of the resulting nanomaterials is largely unknown. Here, using various amyloidogenic proteins/peptides and their corresponding fibrils in combination with different pH, we show defined principle for gold nanocrystal growth into triangular and supra-spheres with high prediction. Using a combination of different biophysical and structural techniques, we establish the mechanism of nucleation and crystal growth of gold nanostructures and show the effective isolation of intact nanostructures from amyloid templates using protein digestion. This study will significantly advance our design principle for bioinspired materials for specific functions with great predictability.
Collapse
Affiliation(s)
- Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Murali Sastry
- Department of Materials Science and Engineering & Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
7
|
Pagliaccia B, Carretti E, Severi M, Berti D, Lubello C, Lotti T. Heavy metal biosorption by Extracellular Polymeric Substances (EPS) recovered from anammox granular sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126661. [PMID: 34315635 DOI: 10.1016/j.jhazmat.2021.126661] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The recovery and conversion of Extracellular Polymeric Substances (EPS) from sewage sludge into bio-based commodities might improve the economics and environmental sustainability of wastewater treatment. This contribution explores the application of EPS from anammox granular waste sludge as biosorbent for the removal of heavy metals, specifically lead, copper, nickel, and zinc. Adsorption capacities equivalent or higher than well-established adsorbent media emerged from single-metal biosorption studies (up to 84.9, 52.8, 21.7 and 7.4 mg/gTSEPS for Pb2+, Cu2+, Ni2+ and Zn2+, respectively). Combining spectroscopic techniques, a mechanistic hypothesis for metal biosorption, based on a combination of electrostatic interaction, ion exchange, complexation, and precipitation, was proposed. The adsorption mechanisms of extracted EPS and non-extracted EPS in the native biomass were indirectly compared by means of single-metal biosorption studies performed with pristine granules (adsorbing up to 103.7, 36.1, 48.2 and 49.8 mg/gTSgranules of Pb2+, Cu2+, Ni2+, and Zn2+, respectively). In comparison with pristine anammox granules, EPS showed lower adsorption capacities except for copper and different adsorption pathways as postulated based on the adsorption data interpretation via theoretical models. The multi-metal biosorption tests excluded significant competitions among different heavy metals for the EPS binding sites, thus opening further scenarios for the treatment of complex wastewaters.
Collapse
Affiliation(s)
- Benedetta Pagliaccia
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze (FI), Italy.
| | - Emiliano Carretti
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto, Fiorentino (FI), Italy.
| | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, Via della Lastruccia, 3-13, 50019 Sesto, Fiorentino (FI), Italy.
| | - Claudio Lubello
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze (FI), Italy.
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Firenze (FI), Italy.
| |
Collapse
|
8
|
Xiang N, Wu S, Wei Z, Shao P, Sun P. Characterization of iron reducibility of soy protein amyloid fibrils and their applications in iron fortification. Food Chem 2021; 353:129420. [PMID: 33711705 DOI: 10.1016/j.foodchem.2021.129420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022]
Abstract
Iron deficiency is a common nutritional disorder worldwide. Iron fortification of food is an effective strategy to control iron deficiency anemia (IDA), however, traditional iron fortificants usually provoke undesirable organoleptic changes or have limited colloid stability. In this research, we investigated iron reducibility of soy protein amyloid fibrils made from soy protein isolates (SPI), soy β-conglycinin (7S) and soy glycinin (11S), and explored their applications in iron fortification. All three protein fibrils showed iron reducibility. The reducibility was utilized to generate fibril-iron nanoparticle composites. The iron reducibility was affected by fibril concentration, degree of fibrillation and reducing amino acid composition. We identified 11S had the most significant effect on reducing Fe (III) to more bioavailable Fe (II) state, whereas 7S showed the optimal result for generation of iron nanoparticle on fibrils in situ. The resulted fibril-iron nanoparticle hybrids showed high dispersibility in various liquid foods, without distinct color change.
Collapse
Affiliation(s)
- Ning Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, China
| | - Sihong Wu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Zhengxun Wei
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, PR China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, China.
| |
Collapse
|
9
|
Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS APPLIED BIO MATERIALS 2021; 4:1156-1177. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal nanohybrids are fast emerging functional nanomaterials with advanced structures, intriguing physicochemical properties, and a broad range of important applications in current nanoscience research. Significant efforts have been devoted toward design and develop versatile metal nanohybrid systems. Among numerous biological components, diverse proteins offer avenues for making advanced multifunctional systems with unusual properties, desired functions, and potential applications. This review discusses the rational design, properties, and applications of metal-protein nanohybrid materials fabricated from proteins and inorganic components. The construction of functional biomimetic nanohybrid materials is first briefly introduced. The properties and functions of these hybrid materials are then discussed. After that, an overview of promising application of biomimetic metal-protein nanohybrid materials is provided. Finally, the key challenges and outlooks related to this fascinating research area are also outlined.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
10
|
Suo Z, Hou X, Liu Y, Xing F, Chen Y, Feng L. β-Lactoglobulin amyloid fibril-templated gold nanoclusters for cellular multicolor fluorescence imaging and colorimetric blood glucose assay. Analyst 2020; 145:6919-6927. [PMID: 32840501 DOI: 10.1039/d0an01357a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β-Lactoglobulin amyloid fibril (BLGF)-capped gold nanoclusters (Au NCs) with red, green and blue emissions were fabricated via pH-dependent reduction strategy. The BLGF-Au NCs exhibited 3.2 times enhancement of fluorescence (λex = 500 nm, λem = 684 nm), a significant 42 nm red shift, a 11.57% quantum yield and a 1.4 μs decay time compared with native β-lactoglobulin (BLG)-stabilized Au NCs. Meanwhile, the multicolor Au NCs were employed for cell imaging via incubation with A549 cells for 14 h. According to the Michaelis-Menten equation, the kinetic parameters of the BLGF-Au NCs showed a lower Km value (66 μmol L-1) for 3,3,5,5-tetramethylbenzidine (TMB) and a higher vmax (3.74 × 10-8 M s-1) for H2O2, which are comparable with other artificial nanoenzymes and natural peroxidases. Based on the highly intrinsic peroxidase-like activity of the BLGF-Au NCs, a colorimetric method was developed for glucose determination with a detection limit of 1.5 μmol L-1 by determining the variation of the absorption at 652 nm, ranging from 5 to 100 μmol L-1. In addition, the glucose assay method also revealed a 101.02 to 104.16% recovery in a real human serum sample.
Collapse
Affiliation(s)
- Zhiguang Suo
- Materials Genome Institute, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | |
Collapse
|
11
|
Kumar U, Bolisetty S, Mezzenga R, Girard C, Dujardin E, Cuche A. Single plasmon spatial and spectral sorting on a crystalline two-dimensional plasmonic platform. NANOSCALE 2020; 12:13414-13420. [PMID: 32614011 DOI: 10.1039/d0nr02066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the context of the emerging field of quantum plasmonics, we demonstrate in this manuscript the wavelength-dependent propagation and sorting of single plasmons launched in a two-dimensional crystalline gold flake by a broadband quantum nanoemitter. The stream of single plasmons in the visible is produced by a nanodiamond hosting a single nitrogen-vacancy color center positioned in the near field of the mesoscopic metallic microplatelet. Spatially and spectrally resolved images of the single plasmon propagation in the pristine hexagonal flake, and then in the same structure after insertion of a Bragg mirror, are obtained by filtered image-plane acquisitions on a leakage-radiation microscope. Our work on two-dimensional crystalline structures paves the way to future fundamental studies and applications in quantum plasmonics.
Collapse
Affiliation(s)
- Upkar Kumar
- CEMES, University of Toulouse and CNRS (UPR 8011), 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse, France.
| | - Sreenath Bolisetty
- ETH Zurich, Department of Health Sciences and Technology, Schmelzberg-strasse 9, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, Schmelzberg-strasse 9, CH-8092 Zurich, Switzerland
| | - Christian Girard
- CEMES, University of Toulouse and CNRS (UPR 8011), 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse, France.
| | - Erik Dujardin
- CEMES, University of Toulouse and CNRS (UPR 8011), 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse, France.
| | - Aurélien Cuche
- CEMES, University of Toulouse and CNRS (UPR 8011), 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse, France.
| |
Collapse
|
12
|
Prasad J, Viollet S, Gurunatha KL, Urvoas A, Fournier AC, Valerio-Lepiniec M, Marcelot C, Baris B, Minard P, Dujardin E. Directed evolution of artificial repeat proteins as habit modifiers for the morphosynthesis of (111)-terminated gold nanocrystals. NANOSCALE 2019; 11:17485-17497. [PMID: 31532442 DOI: 10.1039/c9nr04497c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural biocomposites are shaped by proteins that have evolved to interact with inorganic materials. Protein directed evolution methods which mimic Darwinian evolution have proven highly successful to generate improved enzymes or therapeutic antibodies but have rarely been used to evolve protein-material interactions. Indeed, most reported studies have focused on short peptides and a wide range of oligopeptides with chemical binding affinity for inorganic materials have been uncovered by phage display methods. However, their small size and flexible unfolded structure prevent them from dictating the shape and crystallinity of the growing material. In the present work, a specific set of artificial repeat proteins (αRep), which exhibit highly stable 3D folding with a well-defined hypervariable interacting surface, is selected by directed evolution of a very efficient home-built protein library for their high and selective affinity for the Au(111) surface. The proteins are built from the extendable concatenation of self-compatible repeated motifs idealized from natural HEAT proteins. The high-yield synthesis of Au(111)-faceted nanostructures mediated by these αRep proteins demonstrates their chemical affinity and structural selectivity that endow them with high crystal habit modification performances. Importantly, we further exploit the protein shell spontaneously assembled on the nanocrystal facets to drive protein-mediated colloidal self-assembly and on-surface enzymatic catalysis. Our method constitutes a generic tool for producing nanocrystals with determined faceting, superior biocompatibility and versatile bio-functionalization towards plasmon-based devices and (bio)molecular sensors.
Collapse
Affiliation(s)
- Janak Prasad
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Sébastien Viollet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Kargal L Gurunatha
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Agathe C Fournier
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Marie Valerio-Lepiniec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Cécile Marcelot
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Bulent Baris
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Erik Dujardin
- CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
| |
Collapse
|
13
|
Guterman T, Ing NL, Fleischer S, Rehak P, Basavalingappa V, Hunashal Y, Dongre R, Raghothama S, Král P, Dvir T, Hochbaum AI, Gazit E. Electrical Conductivity, Selective Adhesion, and Biocompatibility in Bacteria-Inspired Peptide-Metal Self-Supporting Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807285. [PMID: 30644148 DOI: 10.1002/adma.201807285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Bacterial type IV pili (T4P) are polymeric protein nanofibers that have diverse biological roles. Their unique physicochemical properties mark them as a candidate biomaterial for various applications, yet difficulties in producing native T4P hinder their utilization. Recent effort to mimic the T4P of the metal-reducing Geobacter sulfurreducens bacterium led to the design of synthetic peptide building blocks, which self-assemble into T4P-like nanofibers. Here, it is reported that the T4P-like peptide nanofibers efficiently bind metal oxide particles and reduce Au ions analogously to their native counterparts, and thus give rise to versatile and multifunctional peptide-metal nanocomposites. Focusing on the interaction with Au ions, a combination of experimental and computational methods provides mechanistic insight into the formation of an exceptionally dense Au nanoparticle (AuNP) decoration of the nanofibers. Characterization of the thus-formed peptide-AuNPs nanocomposite reveals enhanced thermal stability, electrical conductivity from the single-fiber level up, and substrate-selective adhesion. Exploring its potential applications, it is demonstrated that the peptide-AuNPs nanocomposite can act as a reusable catalytic coating or form self-supporting immersible films of desired shapes. The films scaffold the assembly of cardiac cells into synchronized patches, and present static charge detection capabilities at the macroscale. The study presents a novel T4P-inspired biometallic material.
Collapse
Affiliation(s)
- Tom Guterman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nicole L Ing
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sharon Fleischer
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Pavel Rehak
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yamanappa Hunashal
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Ramachandra Dongre
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | | | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Tal Dvir
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, and Sagol Center for Regenerative Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Allon I Hochbaum
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
14
|
Han X, Lv L, Li M, You J, Wu X, Li C. Sheet-like and tubular aggregates of protein nanofibril–phosphate hybrids. Chem Commun (Camb) 2019; 55:393-396. [DOI: 10.1039/c8cc08432g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanofibrils assembled by bovine serum albumin aligned into microtubes and nanosheets upon heating and cooling its solution in phosphate buffer.
Collapse
Affiliation(s)
- Xiangsheng Han
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Lili Lv
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Mingjie Li
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Jun You
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Xiaochen Wu
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Chaoxu Li
- CAS Key Lab of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| |
Collapse
|
15
|
Yang B, Adams DJ, Marlow M, Zelzer M. Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15109-15125. [PMID: 30032622 DOI: 10.1021/acs.langmuir.8b01165] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among the many parameters that have been explored to exercise control over self-assembly processes, the influence of surface properties on self-assembly has been recognized as important but has received considerably less attention than other factors. This is particularly true for biomolecule-derived self-assembling molecules such as protein, peptide, and nucleobase derivatives. Because of their relevance to biomaterial and drug delivery applications, interest in these materials is increasing. As the formation of supramolecular structures from these biomolecule derivatives inevitably brings them into contact with the surfaces of surrounding materials, understanding and controlling the impact of the properties of these surfaces on the self-assembly process are important. In this feature article, we present an overview of the different surface parameters that have been used and studied for the direction of the self-assembly of protein, peptide, and nucleoside-based molecules. The current mechanistic understanding of these processes will be discussed, and potential applications of surface-mediated self-assembly will be outlined.
Collapse
Affiliation(s)
- Bin Yang
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Maria Marlow
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| | - Mischa Zelzer
- Department of Pharmacy , University of Nottingham , Nottingham NG2 7RD , U.K
| |
Collapse
|
16
|
Mason TO, Shimanovich U. Fibrous Protein Self-Assembly in Biomimetic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706462. [PMID: 29883013 DOI: 10.1002/adma.201706462] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Indexed: 05/22/2023]
Abstract
Protein self-assembly processes, by which polypeptides interact and independently form multimeric structures, lead to a wide array of different endpoints. Structures formed range from highly ordered molecular crystals to amorphous aggregates. Order arises in the system from a balance between many low-energy processes occurring due to a set of interactions between residues in a chain, between residues in different chains, and between solute and solvent. In Nature, self-assembling protein systems have evolved over millions of years to organize into supramolecular structures, optimized for specific functions, with this propensity determined by the sequence of their constituent amino acids, of which only 20 are encoded in DNA. The structural materials that arise from biological self-assembly can display remarkable mechanical properties, often as a result of hierarchical structure on the nano- and microscales, and much research has been devoted to mimicking and exploiting these properties for a variety of end uses. This work presents a review of a range of studies in which biological functions are effectively reproduced through the design of self-assembling fibrous protein systems.
Collapse
Affiliation(s)
- Thomas O Mason
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
17
|
Wu X, Han X, Lv L, Li M, You J, Li C. Supramolecular proteinaceous biofilms as trapping sponges for biologic water treatment and durable catalysis. J Colloid Interface Sci 2018; 527:117-123. [DOI: 10.1016/j.jcis.2018.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023]
|
18
|
Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem Rev 2018; 118:6409-6455. [PMID: 29927583 DOI: 10.1021/acs.chemrev.7b00727] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As one unique group of two-dimensional (2D) nanomaterials, 2D metal nanomaterials have drawn increasing attention owing to their intriguing physiochemical properties and broad range of promising applications. In this Review, we briefly introduce the general synthetic strategies applied to 2D metal nanomaterials, followed by describing in detail the various synthetic methods classified in two categories, i.e. bottom-up methods and top-down methods. After introducing the unique physical and chemical properties of 2D metal nanomaterials, the potential applications of 2D metal nanomaterials in catalysis, surface enhanced Raman scattering, sensing, bioimaging, solar cells, and photothermal therapy are discussed in detail. Finally, the challenges and opportunities in this promising research area are proposed.
Collapse
Affiliation(s)
- Ye Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhanxi Fan
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Wenxin Niu
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Cuiling Li
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Nailiang Yang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
19
|
Song Z, Fu H, Wang R, Pacheco LA, Wang X, Lin Y, Cheng J. Secondary structures in synthetic polypeptides from N-carboxyanhydrides: design, modulation, association, and material applications. Chem Soc Rev 2018; 47:7401-7425. [DOI: 10.1039/c8cs00095f] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article highlights the conformation-specific properties and functions of synthetic polypeptides derived from N-carboxyanhydrides.
Collapse
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Hailin Fu
- Department of Chemistry and Polymer Program at the Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| | - Ruibo Wang
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Lazaro A. Pacheco
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Xu Wang
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
| | - Yao Lin
- Department of Chemistry and Polymer Program at the Institute of Materials Science
- University of Connecticut
- Storrs
- USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| |
Collapse
|
20
|
Shen Y, Posavec L, Bolisetty S, Hilty FM, Nyström G, Kohlbrecher J, Hilbe M, Rossi A, Baumgartner J, Zimmermann MB, Mezzenga R. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. NATURE NANOTECHNOLOGY 2017; 12:642-647. [PMID: 28436960 DOI: 10.1038/nnano.2017.58] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/09/2017] [Indexed: 05/10/2023]
Abstract
Iron-deficiency anaemia (IDA) is a major global public health problem. A sustainable and cost-effective strategy to reduce IDA is iron fortification of foods, but the most bioavailable fortificants cause adverse organoleptic changes in foods. Iron nanoparticles are a promising solution in food matrices, although their tendency to oxidize and rapidly aggregate in solution severely limits their use in fortification. Amyloid fibrils are protein aggregates initially known for their association with neurodegenerative disorders, but recently described in the context of biological functions in living organisms and emerging as unique biomaterial building blocks. Here, we show an original application for these protein fibrils as efficient carriers for iron fortification. We use biodegradable amyloid fibrils from β-lactoglobulin, an inexpensive milk protein with natural reducing effects, as anti-oxidizing nanocarriers and colloidal stabilizers for iron nanoparticles. The resulting hybrid material forms a stable protein-iron colloidal dispersion that undergoes rapid dissolution and releases iron ions during acidic and enzymatic in vitro digestion. Importantly, this hybrid shows high in vivo iron bioavailability, equivalent to ferrous sulfate in haemoglobin-repletion and stable-isotope studies in rats, but with reduced organoleptic changes in foods. Feeding the rats with these hybrid materials did not result in abnormal iron accumulation in any organs, or changes in whole blood glutathione concentrations, inferring their primary safety. Therefore, these iron-amyloid fibril hybrids emerge as novel, highly effective delivery systems for iron in both solid and liquid matrices.
Collapse
Affiliation(s)
- Yi Shen
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Lidija Posavec
- Human Nutrition Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 7, Zurich 8092, Switzerland
| | - Sreenath Bolisetty
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Florentine M Hilty
- Human Nutrition Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 7, Zurich 8092, Switzerland
| | - Gustav Nyström
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, PSI Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Antonella Rossi
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8093, Switzerland
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, INSTM Unit, Cittadella Universitaria di Monserrato, I-09100 Cagliari, Italy
| | - Jeannine Baumgartner
- Centre of Excellence for Nutrition, North-West University Potchefstroom, Potchefstroom 2531, South Africa
| | - Michael B Zimmermann
- Human Nutrition Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 7, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| |
Collapse
|
21
|
DeBenedictis EP, Liu J, Keten S. Adhesion mechanisms of curli subunit CsgA to abiotic surfaces. SCIENCE ADVANCES 2016; 2:e1600998. [PMID: 28138525 PMCID: PMC5262458 DOI: 10.1126/sciadv.1600998] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/13/2016] [Indexed: 05/24/2023]
Abstract
Curli fibers are functional amyloids that play a key role in biofilm structure and adhesion to various surfaces. Strong bioinspired adhesives comprising curli fibers have recently been created; however, the mechanisms curli uses to attach onto abiotic surfaces are still uncharacterized. Toward a materials-by-design approach for curli-based adhesives and multifunctional materials, we examine curli subunit adsorption onto graphene and silica surfaces through atomistic simulation. We find that both structural features and sequence influence adhesive strength, enabling the CsgA subunit to adhere strongly to both polar and nonpolar surfaces. Specifically, flexible regions facilitate adhesion to both surfaces, charged and polar residues (Arg, Lys, and Gln) enable strong interactions with silica, and six-carbon aromatic rings (Tyr and Phe) adsorb strongly to graphene. We find that adsorption not only lowers molecular mobility but also leads to loss of secondary structure, factors that must be well balanced for effective surface attachment. Both events appear to propagate through the CsgA structure as correlated motion between clusters of residues, often H-bonded between rows on adjacent β strands. To quantify this, we present a correlation analysis approach to detecting collective motion between residue groups. We find that certain clusters of residues have a higher impact on the stability of the rest of the protein structure, often polar and bulky groups within the helix core. These findings lend insight into bacterial adhesion mechanisms and reveal strategies for theory-driven design of engineered curli fibers that harness point mutations and conjugates for stronger adhesion.
Collapse
Affiliation(s)
- Elizabeth P. DeBenedictis
- Departments of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jenny Liu
- Northwestern University Medical Scientist Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Sinan Keten
- Departments of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
22
|
Huang R, Zhu H, Su R, Qi W, He Z. Catalytic Membrane Reactor Immobilized with Alloy Nanoparticle-Loaded Protein Fibrils for Continuous Reduction of 4-Nitrophenol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11263-11273. [PMID: 27623375 DOI: 10.1021/acs.est.6b03431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A catalytic membrane reactor, which contains a membrane matrix and a catalytic film of alloy nanoparticle-loaded β-lactoglobulin fibrils (NPs@β-LGF), was developed for the continuous-flow reduction of 4-nitrophenol (4-NP). The Cu-Ag and Cu-Ag-Au alloy NPs were synthesized using β-LGF as a scaffold and stabilizing agent. In this process, the Cu nanoclusters were formed in the initial stage and were able to promote the synthesis of Ag0, which acts as a reducing agent for the rapid formation of Au0. Furthermore, a catalytic membrane reactor was constructed by depositing the NPs@β-LGFs on a membrane matrix. The catalytic activity of the Cu-Ag-Au alloy NPs was higher than that of the Cu-Ag alloy NPs, using the reduction of 4-NP to 4-AP as a model reaction. The observed rate constant in the continuous-flow system is also higher than that in the batch system. In addition, these catalytic membrane reactors had good operating stability and antibacterial activity.
Collapse
Affiliation(s)
| | | | - Rongxin Su
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, PR China
| | - Wei Qi
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, PR China
| | | |
Collapse
|
23
|
Paterson S, Thompson SA, Gracie J, Wark AW, de la Rica R. Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy. Chem Sci 2016; 7:6232-6237. [PMID: 30034763 PMCID: PMC6024203 DOI: 10.1039/c6sc02465c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
A new method is introduced for self-assembling citrate-capped gold nanoparticles into supraparticles with crystallographically aligned building blocks. It consists in confining gld nanoparticles inside a cellulose acetate membrane. The constituent nanoparticles are in close contact in the superstructure, and therefore generate hot spots leading to intense Surface-Enhanced Raman Scattering (SERS) signals. They also generate more plasmonic heat than the nanoparticle building blocks. The supraparticles are internalized by cells and show low cytotoxicity, but can kill cancer cells when irradiated with a laser. This, along with the improved plasmonic properties arising from their assembly, makes the gold supraparticles promising materials for applications in bioimaging and nanomedicine.
Collapse
Affiliation(s)
- S Paterson
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| | - S A Thompson
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
- Department of Chemistry and Biochemistry , Hunter College-City University of New York , New York 10065 , USA
| | - J Gracie
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| | - A W Wark
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| | - R de la Rica
- Department of Pure and Applied Chemistry , WestCHEM , University of Strathclyde , Technology and Innovation Centre , 99 George Street , Glasgow , G1 1RD , Scotland , UK .
| |
Collapse
|
24
|
Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1576-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Zhang H, Xin X, Sun J, Zhao L, Shen J, Song Z, Yuan S. Self-assembled chiral helical nanofibers by amphiphilic dipeptide derived from d- or l-threonine and application as a template for the synthesis of Au and Ag nanoparticles. J Colloid Interface Sci 2016; 484:97-106. [PMID: 27592190 DOI: 10.1016/j.jcis.2016.08.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The discovery of a class of self-assembling peptides that spontaneously undergo self-organization into well-ordered structures opened a new avenue for molecular fabrication of biological materials. In this paper, the structure controlled helical nanofibers were prepared by two artificial β-sheet dipeptides with long alkyl chains derived from l- and d-threonine (Thr) and sodium hydroxide (NaOH). These helical nanofibers have been characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD). It was demonstrated that the helicity of the nanofibers could be easily controlled by changing the chirality of the constituent amino acids in the peptide species (d- or l-threonine). Moreover, the hydrogen bonding interactions between the amide groups as well as the hydrophobic interactions among the alkyl chains play important roles in the self-assembly process. It also can be observed that with the passage of time, the hydrogen bonding interactions between the individual nanofiber induced the conversion from nanofibers to nanobelts. Particularly, gold and silver nanoparticles performed good catalytic ability were synthesized using the assembled nanofibers as template.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shanda Nanlu No. 27, Jinan 250100, PR China
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shanda Nanlu No. 27, Jinan 250100, PR China; National Engineering Technology Research Center for Colloidal Materials, Shandong University, Shanda Nanlu No. 27, Jinan 250100, PR China.
| | - Jichao Sun
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shanda Nanlu No. 27, Jinan 250100, PR China
| | - Liupeng Zhao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shanda Nanlu No. 27, Jinan 250100, PR China
| | - Jinglin Shen
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shanda Nanlu No. 27, Jinan 250100, PR China
| | - Zhaohua Song
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Shanda Nanlu No. 27, Jinan 250100, PR China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shanda Nanlu No. 27, Jinan 250100, PR China.
| |
Collapse
|
26
|
Knowles TPJ, Mezzenga R. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:6546-61. [PMID: 27165397 DOI: 10.1002/adma.201505961] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/15/2016] [Indexed: 05/20/2023]
Abstract
Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self-assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self-assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials.
Collapse
Affiliation(s)
- Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Switzerland
- Department of Materials Science, ETH Zurich, Switzerland
| |
Collapse
|
27
|
Formation of different gold nanostructures by silk nanofibrils. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:376-382. [DOI: 10.1016/j.msec.2016.03.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/05/2016] [Accepted: 03/31/2016] [Indexed: 01/26/2023]
|
28
|
Jurado R, Castello F, Bondia P, Casado S, Flors C, Cuesta R, Domínguez-Vera JM, Orte A, Gálvez N. Apoferritin fibers: a new template for 1D fluorescent hybrid nanostructures. NANOSCALE 2016; 8:9648-9656. [PMID: 27103107 DOI: 10.1039/c6nr01044j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recently, research in the field of protein amyloid fibers has gained great attention due to the use of these materials as nanoscale templates for the construction of functional hybrid materials. The formation of apoferritin amyloid-like protein fibers is demonstrated herein for the first time. The morphology, size and stiffness of these one-dimensional structures are comparable to the fibers formed by β-lactoglobulin, a protein frequently used as a model in the study of amyloid-like fibrillar proteins. Nanometer-sized globular apoferritin is capable of self-assembling to form 1D micrometer-sized structures after being subjected to a heating process. Depending on the experimental conditions, fibers with different morphologies and sizes are obtained. The wire-like protein structure is rich in functional groups and allows chemical functionalization with diverse quantum dots (QD), as well as with different Alexa Fluor (AF) dyes, leading to hybrid fluorescent fibers with variable emission wavelengths, from green to near infrared, depending on the QD and AFs coupled. For fibers containing the pair AF488 and AF647, efficient fluorescence energy transfer from the covalently coupled donor (AF488) to acceptor tags (AF647) takes place. Apoferritin fibers are proposed here as a new promising template for obtaining hybrid functional materials.
Collapse
Affiliation(s)
- Rocío Jurado
- Department of Inorganic Chemistry, University of Granada, Avda. Fuentenueva, Granada, 18071, Spain.
| | - Fabio Castello
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Granada, 18071, Spain.
| | | | | | | | - Rafael Cuesta
- Department of Organic and Inorganic Chemistry, EPS Linares, University of Jaén, 28 Alfonso X El Sabio, Linares, 23700, Spain
| | - José M Domínguez-Vera
- Department of Inorganic Chemistry, University of Granada, Avda. Fuentenueva, Granada, 18071, Spain.
| | - Angel Orte
- Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Granada, 18071, Spain.
| | - Natividad Gálvez
- Department of Inorganic Chemistry, University of Granada, Avda. Fuentenueva, Granada, 18071, Spain.
| |
Collapse
|
29
|
Bolisetty S, Mezzenga R. Amyloid-carbon hybrid membranes for universal water purification. NATURE NANOTECHNOLOGY 2016; 11:365-71. [PMID: 26809058 DOI: 10.1038/nnano.2015.310] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/25/2015] [Indexed: 05/17/2023]
Abstract
Industrial development, energy production and mining have led to dramatically increased levels of environmental pollutants such as heavy metal ions, metal cyanides and nuclear waste. Current technologies for purifying contaminated waters are typically expensive and ion specific, and there is therefore a significant need for new approaches. Here, we report inexpensive hybrid membranes made from protein amyloid fibrils and activated porous carbon that can be used to remove heavy metal ions and radioactive waste from water. During filtration, the concentration of heavy metal ions drops by three to five orders of magnitude per passage and the process can be repeated numerous times. Notably, their efficiency remains unaltered when filtering several ions simultaneously. The performance of the membrane is enabled by the ability of the amyloids to selectively absorb heavy metal pollutants from solutions. We also show that our membranes can be used to recycle valuable heavy metal contaminants by thermally reducing ions trapped in saturated membranes, leading to the creation of elemental metal nanoparticles and films.
Collapse
Affiliation(s)
- Sreenath Bolisetty
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| |
Collapse
|
30
|
Ling S, Liang H, Li Z, Ma L, Yao J, Shao Z, Chen X. Soy protein-directed one-pot synthesis of gold nanomaterials and their functional conductive devices. J Mater Chem B 2016; 4:3643-3650. [DOI: 10.1039/c6tb00616g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gold nanomaterials were synthesized via a facile and green method, using soy protein isolate as reductant, template, and capping agent.
Collapse
Affiliation(s)
- Shengjie Ling
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Heyi Liang
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Zhao Li
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Li Ma
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Laboratory of Advanced Materials
- Fudan University
| |
Collapse
|
31
|
Bolisetty S, Arcari M, Adamcik J, Mezzenga R. Hybrid Amyloid Membranes for Continuous Flow Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13867-73. [PMID: 26673736 DOI: 10.1021/acs.langmuir.5b03205] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.
Collapse
Affiliation(s)
- Sreenath Bolisetty
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Mario Arcari
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Jozef Adamcik
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich , Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
32
|
Jermakowicz-Bartkowiak D, Cyganowski P, Leśniewicz A, Tylus W, Chȩcmanowski J, Marcinowska A. Spontaneous formation of gold microplates during reduction-coupled removal of noble metals using Dowex M4195 resin. J Appl Polym Sci 2015. [DOI: 10.1002/app.42425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dorota Jermakowicz-Bartkowiak
- Division of Polymer and Carbonaceous Materials, Faculty of Chemistry; Wroclaw University of Technology; 50-370 Wroclaw Poland
| | - Piotr Cyganowski
- Division of Polymer and Carbonaceous Materials, Faculty of Chemistry; Wroclaw University of Technology; 50-370 Wroclaw Poland
| | - Anna Leśniewicz
- Division of Analytical Chemistry, Faculty of Chemistry; Wroclaw University of Technology; 50-370 Wroclaw Poland
| | - Wlodzimierz Tylus
- Department of Surface Engineering; Catalysis and Corrosion, Faculty of Chemistry, Wroclaw University of Technology; Wybrzeże Wyspianskiego 27 50-370 Wroclaw Poland
| | - Jacek Chȩcmanowski
- Department of Surface Engineering; Catalysis and Corrosion, Faculty of Chemistry, Wroclaw University of Technology; Wybrzeże Wyspianskiego 27 50-370 Wroclaw Poland
| | - Anna Marcinowska
- Division of Polymer and Carbonaceous Materials, Faculty of Chemistry; Wroclaw University of Technology; 50-370 Wroclaw Poland
| |
Collapse
|
33
|
Zhou J, Saha A, Adamcik J, Hu H, Kong Q, Li C, Mezzenga R. Macroscopic single-crystal gold microflakes and their devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1945-1950. [PMID: 25655793 DOI: 10.1002/adma.201405121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/16/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Jiyu Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P.R. China; Department of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, P.R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features. Angew Chem Int Ed Engl 2015; 54:5408-12. [PMID: 25759108 DOI: 10.1002/anie.201411875] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/13/2015] [Indexed: 11/05/2022]
Abstract
Self-assembly of the naturally occurring sweetening agent, glycyrrhizic acid (GA) in water is studied by small-angle X-ray scattering and microscopic techniques. Statistical analysis on atomic force microscopy images reveals the formation of ultralong GA fibrils with uniform thickness of 2.5 nm and right-handed twist with a pitch of 9 nm, independently of GA concentration. Transparent nematic GA hydrogels are exploited to create functional hybrid materials. Two-fold and three-fold hybrids are developed by introducing graphene oxide (GO) and in situ-synthesized gold nanoparticles (Au NPs) in the hydrogel matrix for catalysis applications. In the presence of GO, the catalytic efficiency of Au NPs in the reduction of p-nitrophenol to p-aminophenol is enhanced by 2.5 times. Gold microplate single crystals are further synthesized in the GA hydrogel, expanding the scope of these hybrids and demonstrating their versatility in materials design.
Collapse
Affiliation(s)
- Abhijit Saha
- Laboratory of Food & Soft Materials Science, Institute of Food, Nutrition & Health, Department of Health Sciences & Technology, ETH Zürich, Schmelzbergstrasse 9, LFO E23, 8092 Zürich (Switzerland)
| | | | | | | | | |
Collapse
|
35
|
Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R. Fibrillar Networks of Glycyrrhizic Acid for Hybrid Nanomaterials with Catalytic Features. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411875] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Shimanovich U, Efimov I, Mason TO, Flagmeier P, Buell AK, Gedanken A, Linse S, Åkerfeldt KS, Dobson CM, Weitz DA, Knowles TPJ. Protein microgels from amyloid fibril networks. ACS NANO 2015; 9:43-51. [PMID: 25469621 DOI: 10.1021/nn504869d] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanofibrillar forms of proteins were initially recognized in the context of pathology, but more recently have been discovered in a range of functional roles in nature, including as active catalytic scaffolds and bacterial coatings. Here we show that protein nanofibrils can be used to form the basis of monodisperse microgels and gel shells composed of naturally occurring proteins. We explore the potential of these protein microgels to act as drug carrier agents, and demonstrate the controlled release of four different encapsulated drug-like small molecules, as well as the component proteins themselves. Furthermore, we show that protein nanofibril self-assembly can continue after the initial formation of the microgel particles, and that this process results in active materials with network densities that can be modulated in situ. We demonstrate that these materials are nontoxic to human cells and that they can be used to enhance the efficacy of antibiotics relative to delivery in homogeneous solution. Because of the biocompatibility and biodegradability of natural proteins used in the fabrication of the microgels, as well as their ability to control the release of small molecules and biopolymers, protein nanofibril microgels represent a promising class of functional artificial multiscale materials generated from natural building blocks.
Collapse
Affiliation(s)
- Ulyana Shimanovich
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mirnaya TA, Asaula VN, Yaremchuk GG, Volkov SV. Production and Optical Properties of Liquid-Crystalline Composites Based on Cadmium Caprylate With Gold Nanoparticles. THEOR EXP CHEM+ 2014. [DOI: 10.1007/s11237-014-9360-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Karimi F, Taheri Qazvini N, Namivandi-Zangeneh R. Fish gelatin/Laponite biohybrid elastic coacervates: A complexation kinetics–structure relationship study. Int J Biol Macromol 2013; 61:102-13. [DOI: 10.1016/j.ijbiomac.2013.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
|
39
|
Lara C, Handschin S, Mezzenga R. Towards lysozyme nanotube and 3D hybrid self-assembly. NANOSCALE 2013; 5:7197-7201. [PMID: 23824259 DOI: 10.1039/c3nr02194g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report lysozyme self-assembly into nanotubes, under the effect of hydrolysis at pH 2 and 90 °C. We resolve the final steps of the fibrillation pathway, entailing the closure of multi-stranded helical ribbons into nanotubes, and we provide evidence of β-sheet arrangement within the nanotubes, demonstrating amyloid-like aggregation. Addition of chloroauric acid to the self-assembled structures can lead to generation of either gold single crystal nanoplatelets or gold nanoparticles (when a reducing agent is added) decorating the nanotube and ribbon surfaces. The crystal-based organic-inorganic hybrids further assemble into 3D "sandwiched" structures.
Collapse
Affiliation(s)
- Cecile Lara
- Food and Soft Material Science, Institute of Food, Nutrition and Health, ETH Zürich, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
40
|
Bolisetty S, Vallooran JJ, Adamcik J, Mezzenga R. Magnetic-responsive hybrids of Fe3O4 nanoparticles with β-lactoglobulin amyloid fibrils and nanoclusters. ACS NANO 2013; 7:6146-6155. [PMID: 23750744 DOI: 10.1021/nn401988m] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on the synthesis and magnetic-responsive behavior of hybrids formed by dispersing negatively charged iron oxide (Fe3O4) magnetic nanoparticles in positively charged β-lactoglobulin protein solutions at acidic pH, followed by heating at high temperatures. Depending on the pH used, different hybrid aggregates can be obtained, such as nanoparticle-modified amyloid fibrils (pH 3) and spherical nanoclusters (pH 4.5). We investigate the effect of magnetic fields of varying strengths (0-5 T) on the alignment of these Fe3O4-modified amyloid fibrils and spherical nanoclusters using a combination of scattering, birefringence and microscopic techniques and we find a strong alignment of the hybrids upon increasing the intensity of the magnetic field, which we quantify via 2D and 3D order parameters. We also demonstrate the possibility of controlling magnetically the sol-gel behavior of these hybrids: addition of salt (NaCl, 150 mM) to a solution containing nanoparticles modified with β-lactoglobulin amyloid fibrils (2 wt % fibrils modified with 0.6 wt % Fe3O4 nanoparticles) induces first the formation of a reversible gel, which can then be converted back to solution upon application of a moderate magnetic field of 1.1 T. These hybrids offer a new appealing functional colloidal system in which the aggregation, orientational order and rheological behavior can be efficiently controlled in a purely noninvasive way by external magnetic fields of weak intensity.
Collapse
Affiliation(s)
- Sreenath Bolisetty
- Department of Health Science and Technology, Food and Soft Materials Laboratory, ETH Zurich, Schmelzbergstrasse 9, LFO-E22, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
41
|
Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3694-700. [PMID: 23712898 DOI: 10.1002/adma.201300904] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/20/2013] [Indexed: 05/20/2023]
Abstract
Gold single-crystal platelets with high aspect ratio are combined with amyloid fibrils to design a new class of hybrid nanocomposites. The films gather physical properties from both constituents, for example, plasmon resonance, fluorescence, and water-dependent conductivities ranging from insulating to metallic levels, yet mirroring gold within a broad range of composition, and can serve multiple purposes such as sensors, diagnostic, printed electronics, micromechanical, and biological devices.
Collapse
Affiliation(s)
- Chaoxu Li
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zürich, Switzerland
| | | | | |
Collapse
|
42
|
Jayaram DT, Shankar BH, Ramaiah D. Photomorphogenesis of γ-globulin: effect on sequential ordering and knock out of gold nanoparticles array. RSC Adv 2013. [DOI: 10.1039/c3ra41844h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Qazvini NT, Bolisetty S, Adamcik J, Mezzenga R. Self-Healing Fish Gelatin/Sodium Montmorillonite Biohybrid Coacervates: Structural and Rheological Characterization. Biomacromolecules 2012; 13:2136-47. [DOI: 10.1021/bm3005319] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nader Taheri Qazvini
- Polymer Division,
School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Sreenath Bolisetty
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| | - Jozef Adamcik
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| |
Collapse
|
44
|
Li C, Adamcik J, Mezzenga R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. NATURE NANOTECHNOLOGY 2012; 7:421-7. [PMID: 22562038 DOI: 10.1038/nnano.2012.62] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/27/2012] [Indexed: 05/20/2023]
Abstract
Graphene has exceptional mechanical and electronic properties, but its hydrophobic nature is a disadvantage in biologically related applications. Amyloid fibrils are naturally occurring protein aggregates that are stable in solution or under highly hydrated conditions, have well-organized supramolecular structures and outstanding strength. Here, we show that graphene and amyloid fibrils can be combined to create a new class of biodegradable composite materials with adaptable properties. This new composite material is inexpensive, highly conductive and can be degraded by enzymes. Furthermore, it can reversibly change shape in response to variations in humidity, and can be used in the design of biosensors for quantifying the activity of enzymes. The properties of the composite can be fine-tuned by changing the graphene-to-amyloid ratio.
Collapse
Affiliation(s)
- Chaoxu Li
- ETH Zurich, Food & Soft Materials Science, Schmelzbergstrasse 9, Zürich, Switzerland
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Jozef Adamcik
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Raffaele Mezzenga
- Food & Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zürich, LFO23, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|