1
|
Kumari P, Bahadur N, Conlan XA, Laleh M, Kong L, O'Dell LA, Dumée LF, Merenda A. Atomically-thin Schottky-like photo-electrocatalytic cross-flow membrane reactors for ultrafast remediation of persistent organic pollutants. WATER RESEARCH 2022; 218:118519. [PMID: 35512533 DOI: 10.1016/j.watres.2022.118519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The remediation of persistent organic pollutants in surface and ground water represents a major environmental challenge worldwide. Conventional physico-chemical techniques do not efficiently remove such persistent organic pollutants and new remediation techniques are therefore required. Photo-electro catalytic membranes represent an emerging solution that can combine photocatalytic and electrocatalytic degradation of contaminants along with molecular sieving. Herein, macro-porous photo-electro catalytic membranes were prepared using conductive and porous stainless steel metal membranes decorated with nano coatings of semiconductor photocatalytic metal oxides (TiO2 and ZnO) via atomic layer deposition, producing highly conformal and stable coatings. The metal - semiconductor junction between the stainless steel membranes and photocatalysts provides Schottky - like characteristics to the coated membranes. The PEC membranes showed induced hydrophilicity from the nano-coatings and enhanced electro-chemical properties due to the Schottky junction. A high electron transfer rate was also induced in the coated membranes as the photocurrent efficiency increased by 4 times. The photo-electrocatalytic efficiency of the TiO2 and ZnO coated membranes were demonstrated in batch and cross flow filtration reactors for the degradation of persistent organic pollutant solution, offering increased degradation kinetic factors by 2.9 and 2.3 compared to photocatalysis and electrocatalysis, respectively. The recombination of photo-induced electron and hole pairs is mitigated during the photo-electrocatalytic process, resulting in an enhanced catalytic performance. The strategy offers outstanding perspectives to design stimuli-responsive membrane materials able to sieve and degrade simultaneously toxic contaminants towards greater process integration and self-cleaning operations.
Collapse
Affiliation(s)
- Priyanka Kumari
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; TERI-Deakin Nano-Biotechnology Center (TDNBC), TERI Gram, Gwalpahari, Gurugram, Haryana 122003, India.
| | - Nupur Bahadur
- TADOX® Technology Centre for Water Reuse, Water Resources Division, The Energy and Resources Institute (TERI), India Habitat Centre, Lodhi Road, New Delhi 110003, India.
| | - Xavier A Conlan
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Majid Laleh
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Andrea Merenda
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Rehman S, Farooq R, Jermy R, Mousa Asiri S, Ravinayagam V, Al Jindan R, Alsalem Z, Shah MA, Reshi Z, Sabit H, Alam Khan F. A Wild Fomes fomentarius for Biomediation of One Pot Synthesis of Titanium Oxide and Silver Nanoparticles for Antibacterial and Anticancer Application. Biomolecules 2020; 10:biom10040622. [PMID: 32316549 PMCID: PMC7226099 DOI: 10.3390/biom10040622] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
The present study offers an alternative method for green synthesis of the formation of two types of nanoparticles (NPs). These NPs, titanium oxide and silver NPs (TiO2 and Ag NPs, respectively), were obtained from the amalgamation of intracellular extract of a wild mushroom, Fomes fomentarius, with aqueous solutions of titanium isopropoxide and silver nitrate, respectively. F. fomentarius was identified phenotypically and by 18S ribosomal RNA gene sequencing (Gene accession no: MK635351). The biosynthesis of TiO2 and Ag NPs was studied and characterized by X-ray diffraction (XRD), diffuse reflectance UV-Visible spectroscopy (DR-UV), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Success was achieved in obtaining NPs of differing sizes and shapes. The antibacterial and anticancer activity of the NPs was significant with morphological damage being caused by both, although Ag NPs (10–20 nm) were found to have profound effects on bacterial and cancer cells in comparison to TiO2 NPs (100–120 nm). These metal NPs, synthesized using wild mushrooms, hold a great potential in biomedicinedue to an effective enzyme combination, which permits them to modify different chemical compounds to less toxic forms, which is required for ecofriendly and safe biomaterials.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: or ; Tel.: +966-532-4256
| | - Romana Farooq
- Department of Botany, University of Kashmir, Srinagar 190006, India
| | - Rabindran Jermy
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sarah Mousa Asiri
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Vijaya Ravinayagam
- Deanship of Scientific Research and Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Reem Al Jindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Zainab Alsalem
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Manzoor A. Shah
- Department of Botany, University of Kashmir, Srinagar 190006, India
| | - Zafar Reshi
- Department of Botany, University of Kashmir, Srinagar 190006, India
| | - Hussein Sabit
- Department of Genetic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
3
|
Jung H, Park E, Kim M, Jurng J. Pilot-scale evaluation of a novel TiO 2-supported V 2O 5 catalyst for DeNOx at low temperatures at a waste incinerator. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:283-287. [PMID: 27899246 DOI: 10.1016/j.wasman.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/30/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO2-supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO2-supported V2O5 catalyst coated (with a loading of 7wt% of impregnated V2O5) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m3h-1) using real exhaust gas from the waste incinerator. The experimental results showed that the V2O5/TiO2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions.
Collapse
Affiliation(s)
- Hyounduk Jung
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University-KIST, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Eunseuk Park
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Minsu Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University-KIST, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Jongsoo Jurng
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University-KIST, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
4
|
Influence of acid chain length on the properties of TiO2 prepared by sol-gel method and LC-MS studies of methylene blue photodegradation. J Colloid Interface Sci 2016; 474:58-67. [DOI: 10.1016/j.jcis.2016.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/21/2022]
|
5
|
Facile preparation of porous In2TiO5-rutile composite nanotubes by electrospinning and sensitivity enhancement in NO2 gas at room temperature. J Colloid Interface Sci 2015; 466:72-9. [PMID: 26707774 DOI: 10.1016/j.jcis.2015.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/22/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022]
Abstract
Porous In2TiO5-rutile composite nanotubes (IRCNs) were synthesized via a facile one-step synthesis of the electrospinning approach by using tetrabutyl titanate (TBT), indium nitrate, and polyvinylpyrrolidone (PVP) as a soft-template followed by two-step calcination. The porous composite nanotubes with a bigger surface area have single-crystalline rutile with (110) crystal plane, and the sensor fabricated by it with a content of 12.5 at% In2TiO5 (IRCN2) has shown a response of 4.04 to 100 ppm NO2 at room temperature (RT), which was 20 times as high as the pure In2TiO5 sensor under the same conditions. The IRCN2 sensor had excellent selectivity compared with other gas species such as CO, H2, NH3, H2S and CH4 at RT. The enhanced sensing properties were attributed to the synergy of integrated In2TiO5 and rutile, heterojunction of single-crystal, and its nanotubular structure. Hence, the IRCN2 sensor has a potential application for the development of novel gas sensors at RT.
Collapse
|
6
|
Cheng K, Liu J, Zhao Z, Wei Y, Jiang G, Duan A. Direct synthesis of V–W–Ti nanoparticle catalysts for selective catalytic reduction of NO with NH3. RSC Adv 2015. [DOI: 10.1039/c5ra05978j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of V–W–Ti nanoparticle catalysts with variable V doping amounts were directly synthesized by the sol–gel method, and their catalytic performances were tested for the selective catalytic reduction of NO with ammonia.
Collapse
Affiliation(s)
- Kai Cheng
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- China
| | - Aijun Duan
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- China
| |
Collapse
|
7
|
Temperature-dependent thermal stability and dispersibility of SiO 2 –TiO 2 nanocomposites via a chemical vapor condensation method. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Cha W, Yun ST, Jurng J. Examination of surface phenomena of V2O5loaded on new nanostructured TiO2prepared by chemical vapor condensation for enhanced NH3-based selective catalytic reduction (SCR) at low temperatures. Phys Chem Chem Phys 2014; 16:17900-7. [DOI: 10.1039/c4cp02025a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Lock N, Jensen EML, Mi J, Mamakhel A, Norén K, Qingbo M, Iversen BB. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction – a benchmark structure–property study. Dalton Trans 2013; 42:9555-64. [DOI: 10.1039/c3dt00122a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Liu S, Tao D, Bai H, Liu X. Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J Appl Polym Sci 2012. [DOI: 10.1002/app.36637] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|