1
|
Solution behavior of native and denatured beta lactoglobulin in presence of pyridinium based ionic liquids: A biophysical perspective of folding and refolding pattern of the protein. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Deng F, Yang M, Zhang Y, Wu X, Ma R, Ma F, Shi L. One-pot synthesis of high-concentration mixed-shell polymeric micelles as nanochaperones for the renaturation of bulk proteins. Polym Chem 2022. [DOI: 10.1039/d1py01404h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot synthesis of high-concentration mixed-shell polymeric micelles and synthetic nanoparticles can be used to assist the refolding of bulk denatured proteins and stabilize native proteins for long-term storage.
Collapse
Affiliation(s)
- Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Menglin Yang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Materials Science and Engineering, Tiangong University, Tianjin, P.R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, P.R. China
| |
Collapse
|
3
|
de Castro ASB, de Paula HMC, Coelho YL, Hudson EA, Pires ACS, da Silva LHM. Kinetic and thermodynamic of lactoferrin - Ethoxylated-nonionic surfactants supramolecular complex formation. Int J Biol Macromol 2021; 187:325-331. [PMID: 34280448 DOI: 10.1016/j.ijbiomac.2021.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022]
Abstract
Understanding nonionic surfactant-protein interactions is fundamental from both technological and scientific points of view. However, there is a complete absence of kinetic data for such interactions. We employed surface plasmon resonance (SPR) to determine the kinetic and thermodynamic parameters of bovine lactoferrin-Brij58 interactions at various temperatures under physiological conditions (pH 7.4). The adsorption process was accelerated with increasing temperature, while the desorption rate decreased, resulting in a more thermodynamically stable complex. The kinetic energetic parameters obtained for the formation of the activated complex, [bLF-Brij58]‡, indicated that the potential energy barrier for [bLF-Brij58]‡ formation arises primarily from the reduction in system entropy. [bLF-Brij58]○ formation was entropically driven, indicating that hydrophobic interactions play a fundamental role in bLF interactions with Brij58.
Collapse
Affiliation(s)
- Alan Stampini Benhame de Castro
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Hauster Maximiler Campos de Paula
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Yara Luiza Coelho
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil; Colloid Chemistry Group, Chemistry Institute, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, 37130-000 Alfenas, MG, Brazil
| | - Eliara Acipreste Hudson
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Ana Clarissa S Pires
- Applied Molecular Thermodynamic (THERMA), Food Technology Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Luis Henrique M da Silva
- Colloidal, macromolecular and Green Chemistry (QUIVECOM), Chemistry Department, Federal University of Viçosa, Av. PH Rolfs, s/n, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
4
|
Parray MUD, AlOmar SY, Alkhuriji A, Wani FA, Parray ZA, Patel R. Refolding of guanidinium hydrochloride denatured bovine serum albumin using pyridinium based ionic liquids as artificial chaperons. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Halder S, Aggrawal R, Aswal VK, Ray D, Saha SK. Study of refolding of a denatured protein and microenvironment probed through FRET to a twisted intramolecular charge transfer fluorescent biosensor molecule. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Khan JM, Ahmed A, Alamery SF, Alghamdi OHA, Azmi S, Malik A. Perturbation of anionic surfactant induced amyloid fibrillation by chemical chaperone: A biophysical study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Kumari S, Halder S, Aggrawal R, Aswal VK, Sundar G, Saha SK. Refolding of protein unfolded by gemini surfactants using β-cyclodextrin and sodium dodecyl sulfate in aqueous medium: Study on role of spacer chain of surfactants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Aslam J, Lone IH, Radwan NRE, Siddiqui MF, Parveen S, Alnoman RB, Aslam R. Molecular Interaction of Amino Acid-Based Gemini Surfactant with Human Serum Albumin: Tensiometric, Spectroscopic, and Molecular Docking Study. ACS OMEGA 2019; 4:22152-22160. [PMID: 31891097 PMCID: PMC6933778 DOI: 10.1021/acsomega.9b03315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Binding effect and interaction of N,N'-dialkyl cystine based gemini surfactant (GS); 2(C12Cys) with human serum albumin (HSA) were systematically investigated by the techniques such as surface tension measurement, UV-visible spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking studies. The surface tension measurement exhibited that HSA shifted the critical micelle concentration of the 2(C12Cys) GS to the higher side that confirms the complex formation among 2(C12Cys) GS and HSA which was also verified by UV-visible, fluorescence, and CD spectroscopy. Increase in the concentration of 2(C12Cys) GS increases the absorption of the HSA protein but has a reverse effect on the fluorescence intensity. The analysis of UV-visible study with the help of a static quenching method showed that the value acquired for the bimolecular quenching constant (k q) quenches the intrinsic fluorescence of the HSA protein. Synchronous fluorescence spectrometry declared that the induced-binding conformational changes in HSA and CD results explained the variations in the secondary arrangement of the protein in presence of 2(C12Cys) GS. The present study revealed that the interaction between 2(C12Cys) GS and HSA is important for the preparation and properties of medicines. Molecular docking study provides insight into the specific binding site of 2(C12Cys) GS into the sites of HSA.
Collapse
Affiliation(s)
- Jeenat Aslam
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Irfan Hussain Lone
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Nagi R. E. Radwan
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | | | - Shazia Parveen
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Rua B. Alnoman
- Department
of Chemistry, College of Science, Taibah
University, Yanbu 30799, Saudi Arabia
| | - Ruby Aslam
- Corrosion
Research Laboratory, Department of Applied Chemistry, Faculty of Engineering
and Technology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
9
|
Khan JM, Malik A, Rehman T, AlAjmi MF, Alamery SF, Alghamdi OHA, Khan RH, Odeibat HAM, Fatima S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: An overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 2019; 134:1022-1037. [PMID: 31128177 DOI: 10.1016/j.ijbiomac.2019.05.109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/18/2019] [Indexed: 12/18/2022]
Abstract
Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.
Collapse
|
11
|
Ferreira GMD, Ferreira GMD, Agudelo ÁJP, Hudson EA, Pires ACDS, da Silva LHM. Lactoferrin denaturation induced by anionic surfactants: The role of the ferric ion in the protein stabilization. Int J Biol Macromol 2018; 117:1039-1049. [DOI: 10.1016/j.ijbiomac.2018.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022]
|
12
|
Sonu, Halder S, Kumari S, Aggrawal R, Aswal VK, Saha SK. Study on interactions of cationic gemini surfactants with folded and unfolded bovine serum albumin: Effect of spacer group of surfactants. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Chin J, Mustafi D, Poellmann MJ, Lee RC. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol. Phys Biol 2017; 14:016003. [PMID: 28061483 DOI: 10.1088/1478-3975/aa5788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Certain amphiphilic block copolymers are known to prevent aggregation of unfolded proteins. To better understand the mechanism of this effect, the optical properties of heat-denatured and dithiothreitol reduced lysozyme were evaluated with respect to controls using UV-Vis spectroscopy, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. Then, the effects of adding Polyethylene Glycol (8000 Da), the triblock surfactant Poloxamer 188 (P188), and the tetrablock copolymer Tetronic 1107 (T1107) to the lysozyme solution were compared. Overall, T1107 was found to be more effective than P188 in inhibiting aggregation, while PEG exhibited no efficacy. TEM imaging of heat-denatured and reduced lysozymes revealed spherical aggregates with on average 250-450 nm diameter. Using CD, more soluble lysozyme was recovered with T1107 than P188 with β-sheet secondary structure. The greater effectiveness of the larger T1107 in preventing aggregation of unfolded lysozyme than the smaller P188 and PEG points to steric hindrance at play; signifying the importance of size match between the hydrophobic region of denatured protein and that of amphiphilic copolymers. Thus, our results corroborate that certain multi-block copolymers are effective in preventing heat-induced aggregation of reduced lysozymes and future studies warrant more detailed focus on specific applications of these copolymers.
Collapse
Affiliation(s)
- Jaemin Chin
- Departments of Surgery, The University of Chicago, Chicago, IL 60637, United States of America
| | | | | | | |
Collapse
|
14
|
Gull N, Ishtikhar M, Alam MS, Sabah Andrabi SN, Khan RH. Spectroscopic studies on the comparative refolding of guanidinium hydrochloride denatured hen egg-white lysozyme and Rhizopus niveus lipase assisted by cationic single-chain/gemini surfactants via artificial chaperone protocol. RSC Adv 2017. [DOI: 10.1039/c6ra21528a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Referred to as second generation surfactants, the gemini surfactants have shown promise in various potential areas of surfactant application.
Collapse
Affiliation(s)
- Nuzhat Gull
- Department of Chemistry
- Govt. Degree College for Women
- Srinagar-190001
- India
| | - Mohd Ishtikhar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
- Interdisciplinary Biotechnology Unit
| | | | | | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
15
|
Gospodarczyk W, Kozak M. The severe impact of in vivo-like microfluidic flow and the influence of gemini surfactants on amyloid aggregation of hen egg white lysozyme. RSC Adv 2017. [DOI: 10.1039/c6ra26675d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The formation of amyloid plaques is being intensively studied, as this process underlies severe human diseases, including Alzheimer's disease, and the exact mechanism of this specific aggregation has not been resolved yet.
Collapse
Affiliation(s)
- W. Gospodarczyk
- Department of Macromolecular Physics
- Faculty of Physics
- Adam Mickiewicz University
- Poznań
- Poland
| | - M. Kozak
- Department of Macromolecular Physics
- Faculty of Physics
- Adam Mickiewicz University
- Poznań
- Poland
| |
Collapse
|
16
|
Zhang S, Chen X, Ding S, Lei Q, Fang W. Unfolding of human serum albumin by gemini and single-chain surfactants: A comparative study. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Banerjee C, Roy A, Kundu N, Banik D, Sarkar N. A new strategy to prepare giant vesicles from surface active ionic liquids (SAILs): a study of protein dynamics in a crowded environment using a fluorescence correlation spectroscopic technique. Phys Chem Chem Phys 2016; 18:14520-30. [DOI: 10.1039/c5cp07225e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A simple procedure for the preparation of giant vesicles using surface active ionic liquids (SAILs) has been provided in this paper.
Collapse
Affiliation(s)
- Chiranjib Banerjee
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Arpita Roy
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Niloy Kundu
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Debasis Banik
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Nilmoni Sarkar
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
18
|
Interaction of two imidazolium gemini surfactants with two model proteins BSA and HEWL. Colloid Polym Sci 2015; 293:2855-2866. [PMID: 26412930 PMCID: PMC4575695 DOI: 10.1007/s00396-015-3671-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/26/2015] [Accepted: 06/14/2015] [Indexed: 02/06/2023]
Abstract
Gemini surfactants and their interactions with proteins have gained considerable scientific interest, especially when amyloidogenic proteins are taken into account. In this work, the influence of two selected dicationic (gemini) surfactants (3,3′-[1,8-(2,7-dioxaoctane)]bis(1-dodecylimidazolium) chloride and 3,3′-[1,12-(2,11-dioxadodecane)]bis(1-dodecylimidazolium) chloride) on two model proteins, bovine serum albumin (BSA) and hen egg white lysozyme (HEWL), have been investigated. A pronounced and sophisticated influence on BSA structure has been revealed, including a considerable change of protein radius of gyration as well as substantial alteration of its secondary structure. Radius of gyration has been found to rise significantly with addition of surfactants and to fall down for high surfactants concentration. Similarly, a remarkable fall of secondary structure (α-helix content) has been observed, followed by its partial retrieval for high surfactants concentration. A strong aggregation of BSA has been observed for a confined range of surfactants concentrations as well. In case of HEWL-gemini system, on the other hand, the protein-surfactant interaction was found to be weak. Molecular mechanisms explaining such behaviour of protein-surfactant systems have been proposed. The differences of properties of both studied surfactants have also been discussed.
Collapse
|
19
|
Qin M, Yin T, Wang S, Shen W. Spectroscopic Investigation on the Interactions between Cationic Surfactants and Bovine Serum Albumin. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2014.973031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Gull N, Khan JM, Ishtikhar M, Qadeer A, Khan RA, Gul M, Khan RH. Secondary structural changes in guanidinium hydrochloride denatured mammalian serum albumins and protective effect of small amounts of cationic gemini surfactant pentanediyl-α,ω-bis(cetyldimethylammonium bromide) and methyl-β-cyclodextrin: A spectroscopic study. J Colloid Interface Sci 2015; 439:170-6. [DOI: 10.1016/j.jcis.2014.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
|
21
|
Rather MA, Rather GM, Pandit SA, Bhat SA, Bhat MA. Determination of cmc of imidazolium based surface active ionic liquids through probe-less UV-vis spectrophotometry. Talanta 2014; 131:55-8. [PMID: 25281072 DOI: 10.1016/j.talanta.2014.07.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 10/25/2022]
Abstract
In the first of its kind we herein report the results of our studies undertaken on the micellization behaviour of imidazolium based surface active ionic liquids (SAILs) to prove that their critical micelle concentration (cmc) can be estimated through ultraviolet-visible (UV-vis) spectroscopy without using any external probe. Tensiometric and spectrophotometric investigations of a series of freshly prepared SAILs viz. 1-octyl-3-methylimidazolium chloride ([OMIM][Cl]), 1-octyl-3-methylimidazolium dodecylsulphate ([OMIM][DS]), 1-octyl-3-methylimidazolium benzoate ([OMIM][Bz]), 1-octyl-3-methylimidazolium salicylate ([OMIM][Sc]), 1-octyl-3-methylimidazolium acetate ([OMIM][Ac]) are presented as a case study in support of the said claim. The cmcs estimated through spectrophotometric method were found to be close to the values estimated through tensiometry for the said SAILs. The cmcs for the investigated SAILS were found to vary in order of [OMIM][Cl]>[OMIM][Ac]>[OMIM][Bz]>[OMIM][Sc]>[OMIM][DS]. To the best of our knowledge the present communication will be the first report about the synthesis, characterization and micellization behaviour of [OMIM][Bz] and [OMIM][Sc].
Collapse
Affiliation(s)
| | | | | | - Sajad Ahmad Bhat
- Department of Chemistry, University of Kashmir, Srinagar-190006, J&K, India
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Srinagar-190006, J&K, India.
| |
Collapse
|
22
|
Valente AJM, Söderman O. The formation of host-guest complexes between surfactants and cyclodextrins. Adv Colloid Interface Sci 2014; 205:156-76. [PMID: 24011696 DOI: 10.1016/j.cis.2013.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 11/15/2022]
Abstract
Cyclodextrins are able to act as host molecules in supramolecular chemistry with applications ranging from pharmaceutics to detergency. Among guest molecules surfactants play an important role with both fundamental and practical applications. The formation of cyclodextrin/surfactant host-guest compounds leads to an increase in the critical micelle concentration and in the solubility of surfactants. The possibility of changing the balance between several intermolecular forces, and thus allowing the study of, e.g., dehydration and steric hindrance effects upon association, makes surfactants ideal guest molecules for fundamental studies. Therefore, these systems allow for obtaining a deep insight into the host-guest association mechanism. In this paper, we review the influence on the thermodynamic properties of CD-surfactant association by highlighting the effect of different surfactant architectures (single tail, double-tailed, gemini and bolaform), with special emphasis on cationic surfactants. This is complemented with an assessment of the most common analytical techniques used to follow the association process. The applied methods for computation of the association stoichiometry and stability constants are also reviewed and discussed; this is an important point since there are significant discrepancies and scattered data for similar systems in the literature. In general, the surfactant-cyclodextrin association is treated without reference to the kinetics of the process. However, there are several examples where the kinetics of the process can be investigated, in particular those where volumes of the CD cavity and surfactant (either the tail or in special cases the head group) are similar in magnitude. This will also be critically reviewed.
Collapse
Affiliation(s)
- Artur J M Valente
- Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Olle Söderman
- Division of Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Khan JM, Chaturvedi SK, Khan RH. Elucidating the mode of action of urea on mammalian serum albumins and protective effect of sodium dodecyl sulfate. Biochem Biophys Res Commun 2013; 441:681-8. [DOI: 10.1016/j.bbrc.2013.10.055] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/11/2013] [Indexed: 11/30/2022]
|
24
|
Amani S, Nasim F, Khan TA, Fazili NA, Furkan M, Bhat IA, Khan JM, Khan RH, Naeem A. Detergent induces the formation of IgG aggregates: a multi-methodological approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 120:151-160. [PMID: 24184618 DOI: 10.1016/j.saa.2013.09.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/23/2013] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
Role of micellar environment created by Triton X-100 (TX-100) and CHAPSO on protein conformation using IgG as a model system has been studied in this paper. A substantial amount of secondary structure with the reduction in constant tertiary contacts was obtained in both bovine and human IgG in the presence of 0.12 mM TX-100 where as 6 and 8 mM CHAPSO concentration was required for this type of secondary structure. Further addition of either of the detergents result in the induction of α-helix in both the IgGs as evident by helix specific peaks in the amide I region of FTIR and circular dichroism spectra. Tryptophan and 8-anilino-1-naphthalene-sulphonic acid (ANS) fluorescence confirmed changes in protein conformation upon addition of detergents. Maximum ANS binding at 0.12 mM TX-100 in both while 6 and 8 mM CHAPSO in bovine and human IgG respectively, indicate a compact ''molten-globule''-like conformation. An increase addition of these detergents results in the burial of hydrophobic patches of both IgG owing to aggregation. Presence of aggregates at 0.2 and 0.16 mM TX-100 and 8 and 9 mM CHAPSO, for bovine and human IgG respectively, was further confirmed by reduction in ANS fluorescence, dynamic light scattering study, thioflavin T fluorescence and congo red absorbance.
Collapse
Affiliation(s)
- Samreen Amani
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nasim
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Taqi Ahmed Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Naveed Ahmad Fazili
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Furkan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Imtiyaz Ahmad Bhat
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Javed Masood Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
25
|
Han GJ, Dong XY, Sun Y. Purification effect of artificial chaperone in the refolding of recombinant ribonuclease A from inclusion bodies. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Binding, unfolding and refolding dynamics of serum albumins. Biochim Biophys Acta Gen Subj 2013; 1830:5394-404. [PMID: 23707713 DOI: 10.1016/j.bbagen.2013.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The serum albumins (human and bovine serum albumin) occupy a seminal position among all proteins investigated until today as they are the most abundant circulatory proteins. They play the major role of a transporter of many bio-active substances which include various fatty acids, drug molecules, and amino acids to the target cells. Hence, studying the interaction of these serum albumins with different binding agents has attracted enormous research interests from decades. The nature and magnitude of these bindings have direct consequence on drug delivery, pharmacokinetics, therapeutic efficacy and drug design and control. SCOPE OF THE REVIEW In the present review, we summarize the binding characteristics of both the serum albumins with surfactants, lipids and vesicles, polymers and dendrimers, nanomaterials and drugs. Finally we have reviewed the effect of various chemical and physical denaturants on these albumins with a special emphasis on protein unfolding and refolding dynamics. MAJOR CONCLUSIONS The topic of binding and dynamics of protein unfolding and refolding spans across all areas of inter-disciplinary sciences and will benefit clinical toxicology and medicines. The extensive data from several contemporary research based on albumins will help us to understand protein dynamics in a more illustrious manner. GENERAL SIGNIFICANCE These data have immense significance in understanding and unravelling the mechanisms of protein unfolding/refolding and thus can pave the way to prevent protein mis-folding/aggregation which sometimes leads to severe consequences like Parkinson's and Alzheimer's diseases. This article is a part of a Special Issue entitled Serum Albumin. This article is part of a Special Issue entitled Serum Albumin.
Collapse
|
27
|
Zhang L, Zhang Q, Wang C. Refolding of detergent-denatured lysozyme using β-cyclodextrin-assisted ion exchange chromatography. Biomed Chromatogr 2012; 27:365-70. [DOI: 10.1002/bmc.2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science; Northwest University; Xi'an; 710069; China
| | - Qinming Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science; Northwest University; Xi'an; 710069; China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Material Science; Northwest University; Xi'an; 710069; China
| |
Collapse
|