1
|
Zhang Z, Ye M, Ge Y, Elsehrawy MG, Pan X, Abdullah N, Elattar S, Massoud EES, Lin S. Eco-friendly nanotechnology in rheumatoid arthritis: ANFIS-XGBoost enhanced layered nanomaterials. ENVIRONMENTAL RESEARCH 2024; 262:119832. [PMID: 39181296 DOI: 10.1016/j.envres.2024.119832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by inflammation and pain in the joints, which can lead to joint damage and disability over time. Nanotechnology in RA treatment involves using nano-scale materials to improve drug delivery efficiency, specifically targeting inflamed tissues and minimizing side effects. The study aims to develop and optimize a new class of eco-friendly and highly effective layered nanomaterials for targeted drug delivery in the treatment of RA. The study's primary objective is to develop and optimize a new class of layered nanomaterials that are both eco-friendly and highly effective in the targeted delivery of medications for treating RA. Also, by employing a combination of Adaptive Neuron-Fuzzy Inference System (ANFIS) and Extreme Gradient Boosting (XGBoost) machine learning models, the study aims to precisely control nanomaterials synthesis, structural characteristics, and release mechanisms, ensuring delivery of anti-inflammatory drugs directly to the affected joints with minimal side effects. The in vitro evaluations demonstrated a sustained and controlled drug release, with an Encapsulation Efficiency (EE) of 85% and a Loading Capacity (LC) of 10%. In vivo studies in a murine arthritis model showed a 60% reduction in inflammation markers and a 50% improvement in mobility, with no significant toxicity observed in major organs. The machine learning models exhibited high predictive accuracy with a Root Mean Square Error (RMSE) of 0.667, a correlation coefficient (r) of 0.867, and an R2 value of 0.934. The nanomaterials also demonstrated a specificity rate of 87.443%, effectively targeting inflamed tissues with minimal off-target effects. These findings highlight the potential of this novel approach to significantly enhance RA treatment by improving drug delivery precision and minimizing systemic side effects.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China
| | - Mingtao Ye
- Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China; Shangyu Institute of Science and Engineering Co.Ltd., Hangzhou Dianzi University, Shaoxing, 312300, China
| | - Yisu Ge
- College of Computer Science and Artificial Intelligence, Wenzhou University, 325035, China
| | - Mohamed Gamal Elsehrawy
- Nursing Administration and Education Department, College of Nursing, Prince Sattam Bin Abdulaziz University, Saudi Arabia; Nursing Administration Department, Faculty of Nursing, Port-Said University, Egypt.
| | - Xiaotian Pan
- Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China; Shangyu Institute of Science and Engineering Co.Ltd., Hangzhou Dianzi University, Shaoxing, 312300, China.
| | - Nermeen Abdullah
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samia Elattar
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha, Saudi Arabia
| | - Suxian Lin
- Department of Rheumatology, Wenzhou People's Hospital, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Jin M, Jiang S, Wang Y, Wang Y, Guo S, Dong X, Qi H. Formation of chlorophyll-anionic polysaccharide complex coacervates to improve chlorophyll color stability: Thermodynamic and kinetic stability studies. Int J Biol Macromol 2024; 275:133253. [PMID: 38945709 DOI: 10.1016/j.ijbiomac.2024.133253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Chlorophyll (Chl) is the predominant pigment in green plants that can act as a food color and possesses various functional activities. However, its instability and rapid degradation on heating compromise the sensory qualities of its products. This study aimed to enhance the heat resistance of Chl by forming complex coacervates with two negatively charged polysaccharides, sodium alginate (SA) and K-carrageenan (KC). Dynamic light scattering and scanning electron microscopy analyses confirmed the formation of coacervates between Chl and the polysaccharides, whereas Fourier-transform infrared spectroscopy revealed that hydrogen bonding and electrostatic attraction were the primary forces behind complex formation. Electron spin resonance and thermodynamic studies further revealed that these complexes bolstered the thermal stability of Chl, with a maximum improvement of 70.38 % in t1/2 and a reduction of 50.72 % in the degradation rate constant. In addition, the antioxidant capacity of Chl was enhanced up to 35 %. Therefore, this study offers a novel approach to Chl preservation and suggests a viable alternative to artificial pigments in food products.
Collapse
Affiliation(s)
- Meiran Jin
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Jiang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yujiao Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yuze Wang
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sainan Guo
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- National Engineering Research Center for Seafood, State Key Laboratory of Marine Food Processing and Safety Control, Collaborative Innovation Center of Provincial and Ministerial Coconstruction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Premade Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Stavarache C, Ghebaur A, Serafim A, Vlăsceanu GM, Vasile E, Gârea SA, Iovu H. Fabrication of k-Carrageenan/Alginate/Carboxymethyl Cellulose basedScaffolds via 3D Printing for Potential Biomedical Applications. Polymers (Basel) 2024; 16:1592. [PMID: 38891538 PMCID: PMC11174997 DOI: 10.3390/polym16111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Three-dimensional (3D) printing technology was able to generate great attention because of its unique methodology and for its major potential to manufacture detailed and customizable scaffolds in terms of size, shape and pore structure in fields like medicine, pharmaceutics and food. This study aims to fabricate an ink entirely composed of natural polymers, alginate, k-carrageenan and carboxymethyl cellulose (AkCMC). Extrusion-based 3D printing was used to obtain scaffolds based on a crosslinked interpenetrating polymer network from the alginate, k-carrageenan, carboxymethyl cellulose and glutaraldehide formulation using CaCl2, KCl and glutaraldehyde in various concentrations of acetic acid. The stabile bonding of the crosslinked scaffolds was assessed using infrared spectroscopy (FT-IR) as well as swelling, degradation and mechanical investigations. Moreover, morphology analysis (µCT and SEM) confirmed the 3D printed samples' porous structure. In the AkCMC-GA objects crosslinked with the biggest acetic acid concentration, the values of pores and walls are the highest, at 3.9 × 10-2 µm-1. Additionally, this research proves the encapsulation of vitamin B1 via FT-IR and UV-Vis spectroscopy. The highest encapsulation efficiency of vitamin B1 was registered for the AkCMC-GA samples crosslinked with the maximum acetic acid concentration. The kinetic release of the vitamin was evaluated by UV-Vis spectroscopy. Based on the results of these experiments, 3D printed constructs using AkCMC-GA ink could be used for soft tissue engineering applications and also for vitamin B1 encapsulation.
Collapse
Affiliation(s)
- Cristina Stavarache
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
- C.D. Nenițescu” Institute of Organic and Supramolecular Chemistry, 202-B Spl. Independentei, 060023 Bucharest, Romania
| | - Adi Ghebaur
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
| | - Andrada Serafim
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
- Faculty of Medical Engineering, National University for Science and Technology Politehnica Bucuresti, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Sorina Alexandra Gârea
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
| | - Horia Iovu
- Advanced Polymer Materials Group, National Polytechnic University of Science and Technology Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (C.S.); (A.G.); (A.S.); (G.M.V.); (S.A.G.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
4
|
Das IJ, Bal T. Exploring carrageenan: From seaweed to biomedicine-A comprehensive review. Int J Biol Macromol 2024; 268:131822. [PMID: 38677668 DOI: 10.1016/j.ijbiomac.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biomaterials are pivotal in the realms of tissue engineering, regenerative medicine, and drug delivery and serve as fundamental building blocks. Within this dynamic landscape, polymeric biomaterials emerge as the frontrunners, offering unparalleled versatility across physical, chemical, and biological domains. Natural polymers, in particular, captivate attention for their inherent bioactivity. Among these, carrageenan (CRG), extracted from red seaweeds, stands out as a naturally occurring polysaccharide with immense potential in various biomedical applications. CRG boasts a unique array of properties, encompassing antiviral, antibacterial, immunomodulatory, antihyperlipidemic, antioxidant, and antitumor attributes, positioning it as an attractive choice for cutting-edge research in drug delivery, wound healing, and tissue regeneration. This comprehensive review encapsulates the multifaceted properties of CRG, shedding light on the chemical modifications that it undergoes. Additionally, it spotlights pioneering research that harnesses the potential of CRG to craft scaffolds and drug delivery systems, offering high efficacy in the realms of tissue repair and disease intervention. In essence, this review celebrates the remarkable versatility of CRG and its transformative role in advancing biomedical solutions.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
5
|
Stavarache C, Gȃrea SA, Serafim A, Olăreț E, Vlăsceanu GM, Marin MM, Iovu H. Three-Dimensional-Printed Sodium Alginate and k-Carrageenan-Based Scaffolds with Potential Biomedical Applications. Polymers (Basel) 2024; 16:305. [PMID: 38337194 DOI: 10.3390/polym16030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
This work reports the development of a marine-derived polysaccharide formulation based on k-Carrageenan and sodium alginate in order to produce a novel scaffold for engineering applications. The viscoelastic properties of the bicomponent inks were assessed via rheological tests prior to 3D printing. Compositions with different weight ratios between the two polymers, without any crosslinker, were subjected to 3D printing for the first time, to the best of our knowledge, and the fabrication parameters were optimized to ensure a controlled architecture. Crosslinking of the 3D-printed scaffolds was performed in the presence of a chloride mixture (CaCl2:KCl = 1:1; v/v) of different concentrations. The efficiency of the crosslinking protocol was evaluated in terms of swelling behavior and mechanical properties. The swelling behavior indicated a decrease in the swelling degree when the concentration of the crosslinking agent was increased. These results are consistent with the nanoindentation measurements and the results of the macro-scale tests. Moreover, morphology analysis was also used to determine the pore size of the samples upon freeze-drying and the uniformity and micro-architectural characteristics of the scaffolds. Overall, the registered results indicated that the bicomponent ink, Alg/kCG = 1:1 may exhibit potential for tissue-engineering applications.
Collapse
Affiliation(s)
- Cristina Stavarache
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- "C.D. Neniţescu" Institute of Organic and Supramolecular Chemistry, 202-B Splaiul Independentei, 060023 Bucharest, Romania
| | - Sorina Alexandra Gȃrea
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Andrada Serafim
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Elena Olăreț
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucuresti, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Maria Minodora Marin
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
6
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Study of Hydroxypropyl β-Cyclodextrin and Puerarin Inclusion Complexes Encapsulated in Sodium Alginate-Grafted 2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid Hydrogels for Oral Controlled Drug Delivery. Gels 2023; 9:gels9030246. [PMID: 36975695 PMCID: PMC10048200 DOI: 10.3390/gels9030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Puerarin has been reported to have anti-inflammatory, antioxidant, immunity enhancement, neuroprotective, cardioprotective, antitumor, and antimicrobial effects. However, due to its poor pharmacokinetic profile (low oral bioavailability, rapid systemic clearance, and short half-life) and physicochemical properties (e.g., low aqueous solubility and poor stability) its therapeutic efficacy is limited. The hydrophobic nature of puerarin makes it difficult to load into hydrogels. Hence, hydroxypropyl-β-cyclodextrin (HP-βCD)-puerarin inclusion complexes (PIC) were first prepared to enhance solubility and stability; then, they were incorporated into sodium alginate-grafted 2-acrylamido-2-methyl-1-propane sulfonic acid (SA-g-AMPS) hydrogels for controlled drug release in order to increase bioavailability. The puerarin inclusion complexes and hydrogels were evaluated via FTIR, TGA, SEM, XRD, and DSC. Swelling ratio and drug release were both highest at pH 1.2 (36.38% swelling ratio and 86.17% drug release) versus pH 7.4 (27.50% swelling ratio and 73.25% drug release) after 48 h. The hydrogels exhibited high porosity (85%) and biodegradability (10% in 1 week in phosphate buffer saline). In addition, the in vitro antioxidative activity (DPPH (71%), ABTS (75%), and antibacterial activity (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) indicated the puerarin inclusion complex-loaded hydrogels had antioxidative and antibacterial capabilities. This study provides a basis for the successful encapsulation of hydrophobic drugs inside hydrogels for controlled drug release and other purposes.
Collapse
|
9
|
Mefenamic acid modified-release by encapsulation in a k-carrageenan/sericin blend. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Srivastava N, Choudhury AR. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| |
Collapse
|
11
|
Wu B, Li Y, Li Y, Li H, Xia Q. The influence of Ca2+/K+ weight ratio on the physicochemical properties and in vitro digestion behavior of resveratrol-loaded Pickering emulsions encapsulated in alginate/κ-carrageenan hydrogel beads. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Rehman S, Madni A, Jameel QA, Usman F, Raza MR, Ahmad F, Shoukat H, Aali H, Shafiq A. Natural Polymer-Based Graphene Oxide Bio-nanocomposite Hydrogel Beads: Superstructures with Advanced Potentials for Drug Delivery. AAPS PharmSciTech 2022; 23:304. [PMID: 36396831 DOI: 10.1208/s12249-022-02456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
The current study sought to create graphene oxide-based superstructures for gastrointestinal drug delivery. Graphene oxide has a large surface area that can be used to load anti-cancer drugs via non-covalent methods such as surface adsorption and hydrogen bonding. To enhance the bio-applicability of graphene oxide, nano-hybrids were synthesized by encapsulating the graphene oxide into calcium alginate hydrogel beads through the dripping-extrusion technique. These newly developed bio-nanocomposite hybrid hydrogel beads were evaluated in structural analysis, swelling study, drug release parameters, haemolytic assay, and antibacterial activity. Doxorubicin served as a model drug. The drug entrapment efficiency was determined by UV-spectroscopy analysis and was found to be high at ⁓89% in graphene oxide hybrid hydrogel beads. These fabricated hydrogel beads ensure the drug release from a hybrid polymeric matrix in a more controlled and sustained pattern avoiding the problems associated with a non-hybrid polymeric system. The drug release study of 12 h shows about 83% release at pH 6.8. In vitro drug release kinetics proved that drug release was a Fickian mechanism. The cytotoxic effect of graphene oxide hybrid alginate beads was also determined by evaluating the morphology of bacterial cells and red blood cells after incubation. Additionally, it was determined that the sequential encapsulation of graphene oxide in alginate hydrogel beads hides its uneven edges and lessens the graphene oxide's negative impacts. Also, the antibacterial study and biocompatibility of fabricated hydrogel beads made them potential candidates for gastrointestinal delivery.
Collapse
Affiliation(s)
- Sadia Rehman
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Qazi Adnan Jameel
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Faiz Ahmad
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Quaid-E-Azam College of Pharmacy, Sahiwal, 57000, Pakistan
| | - Hamdan Aali
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
13
|
Fatima M, Sheikh A, Abourehab MAS, Kesharwani P. Advancements in Polymeric Nanocarriers to Mediate Targeted Therapy against Triple-Negative Breast Cancer. Pharmaceutics 2022; 14:2432. [PMID: 36365249 PMCID: PMC9695386 DOI: 10.3390/pharmaceutics14112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a destructive disease with a poor prognosis, low survival rate and high rate of metastasis. It comprises 15% of total breast cancers and is marked by deficiency of three important receptor expressions, i.e., progesterone, estrogen, and human epidermal growth factor receptors. This absence of receptors is the foremost cause of current TNBC therapy failure, resulting in poor therapeutic response in patients. Polymeric nanoparticles are gaining much popularity for transporting chemotherapeutics, genes, and small-interfering RNAs. Due to their exclusive properties such as great stability, easy surface modification, stimuli-responsive and controlled drug release, ability to condense more than one therapeutic moiety inside, tumor-specific delivery of payload, enhanced permeation and retention effect, present them as ideal nanocarriers for increasing efficacy, bioavailability and reducing the toxicity of therapeutic agents. They can even be used as theragnostic agents for the diagnosis of TNBC along with its treatment. In this review, we discuss the limitations of already existing TNBC therapies and highlight the novel approach to designing and the functionalization of polymeric nanocarriers for the effective treatment of TNBC.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 602105, India
| |
Collapse
|
14
|
Intelligent-Responsive Enrofloxacin-Loaded Chitosan Oligosaccharide-Sodium Alginate Composite Core-Shell Nanogels for On-Demand Release in the Intestine. Animals (Basel) 2022; 12:ani12192701. [PMID: 36230443 PMCID: PMC9559476 DOI: 10.3390/ani12192701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Novel pharmaceutical formulations are attracting interest in their potential to overcome the poor palatability and strong gastric irritation of enrofloxacin. To overcome the difficulty of treating intestinal Escherichia coli infections, an oral intelligent-responsive chitosan-oligosaccharide (COS)–sodium alginate (SA) composite core-shell nanogel loaded with enrofloxacin was designed and systematically evaluated. Scanning electron microscopy images revealed that enrofloxacin nanogels were incorporated into the nano-sized cross-linked networks. The physical state and molecular interaction among the components of the nanogel and the enrofloxacin were evaluated by Fourier transform infrared spectroscopy. Furthermore, their biocompatible structure, high drug loading efficacy, ideal stability, “on-demand” release at the target site, and antibacterial activity were confirmed. Thus, the present study may serve as a fruitful platform to explore nanogel to resolve the challenge of enrofloxacin formulation development and the fight against intestinal bacterial infections. Abstract Enrofloxacin has a poor palatability and causes strong gastric irritation; the oral formulation of enrofloxacin is unavailable, which limits the treatment of Escherichia coli (E. coli) infections via oral administration. To overcome the difficulty in treating intestinal E. coli infections, an oral intelligent-responsive chitosan-oligosaccharide (COS)–sodium alginate (SA) composite core-shell nanogel loaded with enrofloxacin was explored. The formulation screening, characteristics, pH-responsive performance in gastric juice and the intestinal tract, antibacterial effects, therapeutic effects, and biosafety level of the enrofloxacin composite nanogels were investigated. The optimized concentrations of COS, SA, CaCl2, and enrofloxacin were 8, 8, 0.2, and 5 mg/mL, respectively. The encapsulation efficiency, size, loading capacity, zeta potential, and polydispersity index of the optimized formulation were 72.4 ± 0.8%, 143.5 ± 2.6 nm, 26.6 ± 0.5%, −37.5 ± 1.5 mV, and 0.12 ± 0.07, respectively. Scanning electron microscopy images revealed that enrofloxacin-loaded nanogels were incorporated into the nano-sized cross-linked networks. Fourier transform infrared spectroscopy showed that the nanogels were prepared by the electrostatic interaction of the differently charged groups (positive amino groups (-NH3+) of COS and the negative phenolic hydroxyl groups (-COO−) of SA). In vitro, pH-responsive release performances revealed effective pH-responsive performances, which can help facilitate targeted “on-demand” release at the target site and ensure that the enrofloxacin has an ideal stability in the stomach and a responsive release in the intestinal tract. The antibacterial activity study demonstrated that more effective bactericidal activity against E. coli could have a better treatment effect than the enrofloxacin solution. Furthermore, the enrofloxacin composite nanogels had great biocompatibility. Thus, the enrofloxacin composite core-shell nanogels might be an oral intelligent-responsive preparation to overcome the difficulty in treating intestinal bacterial infections.
Collapse
|
15
|
Mahmood A, Mahmood A, Sarfraz RM, Ijaz H, Zafar N, Ashraf MU. Hydrogel-based intelligent delivery system for controlled release of diloxanide furoate. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Rostami E. Recent achievements in sodium alginate-based nanoparticles for targeted drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
18
|
Lin J, Jiao G, Kermanshahi-pour A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar Drugs 2022; 20:306. [PMID: 35621958 PMCID: PMC9146341 DOI: 10.3390/md20050306] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are three-dimensional crosslinked hydrophilic polymer networks with great potential in drug delivery, tissue engineering, wound dressing, agrochemicals application, food packaging, and cosmetics. However, conventional synthetic polymer hydrogels may be hazardous and have poor biocompatibility and biodegradability. Algal polysaccharides are abundant natural products with biocompatible and biodegradable properties. Polysaccharides and their derivatives also possess unique features such as physicochemical properties, hydrophilicity, mechanical strength, and tunable functionality. As such, algal polysaccharides have been widely exploited as building blocks in the fabrication of polysaccharide-based hydrogels through physical and/or chemical crosslinking. In this review, we discuss the extraction and characterization of polysaccharides derived from algae. This review focuses on recent advances in synthesis and applications of algal polysaccharides-based hydrogels. Additionally, we discuss the techno-economic analyses of chitosan and acrylic acid-based hydrogels, drawing attention to the importance of such analyses for hydrogels. Finally, the future prospects of algal polysaccharides-based hydrogels are outlined.
Collapse
Affiliation(s)
- Jianan Lin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| | - Guangling Jiao
- AKSO Marine Biotech Inc., Suite 3, 1697 Brunswick St., Halifax, NS B3J 2G3, Canada;
| | - Azadeh Kermanshahi-pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington St., Halifax, NS B3J 1Z1, Canada;
| |
Collapse
|
19
|
Mo C, Luo R, Chen Y. Advances in the stimuli-responsive injectable hydrogel for controlled release of drugs. Macromol Rapid Commun 2022; 43:e2200007. [PMID: 35344233 DOI: 10.1002/marc.202200007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Indexed: 11/11/2022]
Abstract
The stimuli-responsiveness of injectable hydrogel has been drastically developed for the controlled release of drugs and achieved encouraging curative effects in a variety of diseases including wounds, cardiovascular diseases and tumors. The gelation, swelling and degradation of such hydrogels respond to endogenous biochemical factors (such as pH, reactive oxygen species, glutathione, enzymes, glucose) and/or to exogenous physical stimulations (like light, magnetism, electricity and ultrasound), thereby accurately releasing loaded drugs in response to specifically pathological status and as desired for treatment plan and thus improving therapeutic efficacy effectively. In this paper, we give a detailed introduction of recent progresses in responsive injectable hydrogels and focus on the design strategy of various stimuli-sensitivities and their resultant alteration of gel dissociation and drug liberation behaviour. Their application in disease treatment is also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chunxiang Mo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, 410001, China
| |
Collapse
|
20
|
Kaur J, Gulati M, Kumar Jha N, Disouza J, Patravale V, Dua K, Kumar Singh S. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov Today 2022; 27:1495-1512. [DOI: 10.1016/j.drudis.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
|
21
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
22
|
Synthesis of interpenetrating network (IPN) hydrogels based on acrylic acid (AAc) and guar gum and its application as drug delivery for pyridoxine hydrochloride (vitamin B6). JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Synthesis of silver nanoparticles by plant extract, incorporated into alginate films and their characterizations. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01923-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Rehman S, Ranjha NM, Shoukat H, Madni A, Ahmad F, Raza MR, Jameel QA, Majeed A, Ramzan N. Fabrication, Evaluation, In Vivo Pharmacokinetic and Toxicological Analysis of pH-Sensitive Eudragit S-100-Coated Hydrogel Beads: a Promising Strategy for Colon Targeting. AAPS PharmSciTech 2021; 22:209. [PMID: 34312763 DOI: 10.1208/s12249-021-02082-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of present research aims to fabricate a system of enteric coating of hydrogel beads with pH-sensitive polymer, which shows solubility at pH > 7, and explore their potential to target the colon for drug delivery. Hydrogel beads were fabricated through the extrusion-dripping technique followed by ion gelation crosslinking. Moreover, freeze-thaw cycle was implemented for crosslinking of polyvinyl alcohol (PVA)/Ca-alginate blend beads. The oil-in-oil solvent evaporation method was adopted for the Eudragit coating of hydrogel beads using different coat: core ratios (4:1 or 8:1). Coated and uncoated hydrogel beads were evaluated by in vitro physicochemical properties, swelling and drug release behaviours, and in vivo pharmacokinetics, swelling, and toxicity evaluation. Diclofenac sodium was loaded as an experimental drug. Drug entrapment efficiency for the PVA/Ca-alginate beads was calculated as 98%, and for Ca-alginate beads, it came out to a maximum of 74%. Drug release study at various pH suggested that, unlike uncoated hydrogel beads, the coated beads delay the release of diclofenac sodium in low pH of the gastric and intestinal environment, thus targeting the colon for the drug release. It was concluded that Eudragit S-100-coated hydrogel beads could serve as a more promising and reliable way to target the colon for drug delivery.Graphical abstract.
Collapse
|
25
|
Nazila Taghavi, Massoumi B, Jaymand M. A Novel pH-Responsive Magnetic Nanosystem for Delivery of Anticancer Drugs. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Mokhtari H, Tavakoli S, Safarpour F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering. Polymers (Basel) 2021; 13:1744. [PMID: 34073518 PMCID: PMC8198092 DOI: 10.3390/polym13111744] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, many studies have focused on carrageenan-based hydrogels for biomedical applications thanks to their intrinsic properties, including biodegradability, biocompatibility, resembling native glycosaminoglycans, antioxidants, antitumor, immunomodulatory, and anticoagulant properties. They can easily change to three-dimensional hydrogels using a simple ionic crosslinking process. However, there are some limitations, including the uncontrollable exchange of ions and the formation of a brittle hydrogel, which can be overcome via simple chemical modifications of polymer networks to form chemically crosslinked hydrogels with significant mechanical properties and a controlled degradation rate. Additionally, the incorporation of various types of nanoparticles and polymer networks into carrageenan hydrogels has resulted in the formation of hybrid platforms with significant mechanical, chemical and biological properties, making them suitable biomaterials for drug delivery (DD), tissue engineering (TE), and wound healing applications. Herein, we aim to overview the recent advances in various chemical modification approaches and hybrid carrageenan-based platforms for tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Hamidreza Mokhtari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (H.M.); (F.S.)
| | - Shima Tavakoli
- Division of Polymer Chemistry, Department of Chemistry-Ångstrom Laboratory, Uppsala University, SE75121 Uppsala, Sweden;
| | - Fereshteh Safarpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (H.M.); (F.S.)
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (H.M.); (F.S.)
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
27
|
Chudasama NA, Sequeira RA, Moradiya K, Prasad K. Seaweed Polysaccharide Based Products and Materials: An Assessment on Their Production from a Sustainability Point of View. Molecules 2021; 26:2608. [PMID: 33947023 PMCID: PMC8124237 DOI: 10.3390/molecules26092608] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Among the various natural polymers, polysaccharides are one of the oldest biopolymers present on the Earth. They play a very crucial role in the survival of both animals and plants. Due to the presence of hydroxyl functional groups in most of the polysaccharides, it is easy to prepare their chemical derivatives. Several polysaccharide derivatives are widely used in a number of industrial applications. The polysaccharides such as cellulose, starch, chitosan, etc., have several applications but due to some distinguished characteristic properties, seaweed polysaccharides are preferred in a number of applications. This review covers published literature on the seaweed polysaccharides, their origin, and extraction from seaweeds, application, and chemical modification. Derivatization of the polysaccharides to impart new functionalities by chemical modification such as esterification, amidation, amination, C-N bond formation, sulphation, acetylation, phosphorylation, and graft copolymerization is discussed. The suitability of extraction of seaweed polysaccharides such as agar, carrageenan, and alginate using ionic solvent systems from a sustainability point of view and future prospects for efficient extraction and functionalization of seaweed polysaccharides is also included in this review article.
Collapse
Affiliation(s)
- Nishith A. Chudasama
- P. D. Patel Institute of Applied Sciences, CHARUSAT Campus, Charotar University of Sciences and Technology, Changa 388421, India;
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
| | - Rosy Alphons Sequeira
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kinjal Moradiya
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
| | - Kamalesh Prasad
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; (R.A.S.); (K.M.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
A polymer hybrid film based on poly(vinyl cinnamate) and poly(2-hydroxy ethyl methacrylate) for controlled flurbiprofen release. JOURNAL OF POLYMER RESEARCH 2021. [PMCID: PMC7977491 DOI: 10.1007/s10965-021-02493-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A crosslinked polymer hybrid film, ipn-poly(vinyl cinnamate-graft-2-hydroxy ethyl methacrylate)-v-poly(ethylene glycol dimethacrylate) was synthesized by UV initiation using poly(vinyl cinnamate) (polyVCi), 2-hydroxy ethyl methacrylate (HEMA) monomer and ethylene glycol dimethacrylate (EGDMA) crosslinker. Benzophenone (Ph2CO), was used as the photoinitiator. The synthesis was optimized by changing the concentration of HEMA, Ph2CO, EGDMA, and UV irradiation time. PolyVCi undergoes photocrosslinking by 2 + 2 photocylo addition while the monomer/crosslinker couple, HEMA/EGDMA, undergoes free radical polymerization and crosslinking to form EGDMA crosslinked polyHEMA. Hence, simultaneous interpenetrating polymer network (IPN) formation occurs. The IPN consists of dual network of photocrosslinked polyVCi and EGDMA crosslinked polyHEMA chains. Grafting of HEMA/EGDMA chains on the polyVCi backbone also occur during network formation. The chemical functionalities present in the polyVCi/polyHEMA/polyEGDMA IPN films obtained were characterized by FTIR and SEM analysis. The contact angle measurements show enhanced wettability of the IPN film compared to polyVCi surface. TGA analysis confirms thermal stability of the films. Swelling behavior of the films examined in water and in ethanol reveals the effects of the chemical natures of polyVCi and polyHEMA as well as that of crosslinking on the hydrophilicity of the film. The films were tested as drug release matrices using flurbiprofen. The drug was loaded into the film matrix during IPN formation under UV irradiation. PolyVCi/polyHEMA/polyEGDMA IPN proved to be a suitable release matrix for flurbiprofen demonstrating controlled release behavior and zero-order release kinetics. The release mechanism was confirmed by its Ritger-Peppas “n” value (1.00 to 1.42), which indicates super case II release.
Collapse
|
29
|
Ding J, Zhang H, Wang W, Zhu Y, Wang Q, Wang A. Synergistic effect of palygorskite nanorods and ion crosslinking to enhance sodium alginate-based hydrogels. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
A Critical Review on the Synthesis of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for Biomedical Delivery Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9010137] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sodium alginate (Na-Alg) is water-soluble, neutral, and linear polysaccharide. It is the derivative of alginic acid which comprises 1,4-β-d-mannuronic (M) and α-l-guluronic (G) acids and has the chemical formula (NaC6H7O6). It shows water-soluble, non-toxic, biocompatible, biodegradable, and non-immunogenic properties. It had been used for various biomedical applications, among which the most promising are drug delivery, gene delivery, wound dressing, and wound healing. For different biomedical applications, it is used in different forms with the help of new techniques. That is the reason it had been blended with different polymers. In this review article, we present a comprehensive overview of the combinations of sodium alginate with natural and synthetic polymers and their biomedical applications involving delivery systems. All the scientific/technical issues have been addressed, and we have highlighted the recent advancements.
Collapse
|
31
|
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs 2020; 18:E583. [PMID: 33238488 PMCID: PMC7700686 DOI: 10.3390/md18110583] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | | |
Collapse
|
32
|
Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. MATERIALIA 2020. [DOI: 10.1016/j.mtla.2020.100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Oral delivery of insulin with intelligent glucose-responsive switch for blood glucose regulation. J Nanobiotechnology 2020; 18:96. [PMID: 32664978 PMCID: PMC7362448 DOI: 10.1186/s12951-020-00652-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The traditional treatment for diabetes usually requires frequent insulin injections to maintain normoglycemia, which is painful and difficult to achieve blood glucose control. RESULTS To solve these problems, a non-invasive and painless oral delivery nanoparticle system with bioadhesive ability was developed by amphipathic 2-nitroimidazole-L-cysteine-alginate (NI-CYS-ALG) conjugates. Moreover, in order to enhance blood glucose regulation, an intelligent glucose-responsive switch in this nanoparticle system was achieved by loading with insulin and glucose oxidase (GOx) which could supply a stimulus-sensitive turnover strategy. In vitro tests illustrated that the insulin release behavior was switched "ON" in response to hyperglycemic state by GOx catalysis and "OFF" by normal glucose levels. Moreover, in vivo tests on type I diabetic rats, this system displayed a significant hypoglycemic effect, avoiding hyperglycemia and maintaining a normal range for up to 14 h after oral administration. CONCLUSION The stimulus-sensitive turnover strategy with bioadhesive oral delivery mode indicates a potential for the development of synthetic GR-NPs for diabetes therapy, which may provide a rational design of proteins, low molecular drugs, as well as nucleic acids, for intelligent releasing via the oral route.
Collapse
|
34
|
Barczak M, Borowski P, Gila-Vilchez C, Alaminos M, González-Caballero F, López-López MT. Revealing importance of particles' surface functionalization on the properties of magnetic alginate hydrogels. Carbohydr Polym 2020; 247:116747. [PMID: 32829864 DOI: 10.1016/j.carbpol.2020.116747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
Abstract
Iron/silica core-shell microparticles (IMPs) were functionalized by different functional groups including amine, glycidoxy, phenyl, and thiocyanate. Many of the IMPs modifications are reported for the first time. The resulting surface chemistry turned out to affect the properties of magnetic alginate hydrogels fabricated from sodium alginate and dispersed IMPs. Differences in magnetorheological properties of the obtained magnetic hydrogels can be at least partially attributed to the interactions between alginate and surface functionalities of IMPs. Density Functional Theory (DFT) calculations were carried out to get detailed insight into those interactions in order to link them with the observed macroscopic properties of the obtained hydrogels. For example, amine groups on the IMPs surface resulted in well-formed hydrogels while the presence of thiocyanate or phenyl groups - in poorly formed ones. This observation can be used for tuning the properties of various carbohydrate-based hydrogels.
Collapse
Affiliation(s)
- Mariusz Barczak
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20031, Lublin, Poland.
| | - Piotr Borowski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20031, Lublin, Poland
| | - Cristina Gila-Vilchez
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Fernando González-Caballero
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Modesto T López-López
- Department of Applied Physics, Faculty of Sciences, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
35
|
Geyik G, Işıklan N. Synthesis, characterization and swelling performance of a temperature/pH-sensitive κ-carrageenan graft copolymer. Int J Biol Macromol 2020; 152:359-370. [DOI: 10.1016/j.ijbiomac.2020.02.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/27/2022]
|
36
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
37
|
Sun X, Pan C, Ying Z, Yu D, Duan X, Huang F, Ling J, Ouyang XK. Stabilization of zein nanoparticles with k-carrageenan and tween 80 for encapsulation of curcumin. Int J Biol Macromol 2020; 146:549-559. [DOI: 10.1016/j.ijbiomac.2020.01.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
|
38
|
Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications. Curr Pharm Des 2020; 25:1172-1186. [PMID: 31465278 DOI: 10.2174/1381612825666190425190754] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient's body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs. METHODS Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery. RESULTS Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications. CONCLUSION In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.
Collapse
Affiliation(s)
- Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Suraj Kumar Nayak
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Samarendra Maji
- SRM Research Institute, SRM Institute of Science and Technology, Kanchipuram, India
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Gwangwon, Korea
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
39
|
Nogueira J, Soares SF, Amorim CO, Amaral JS, Silva C, Martel F, Trindade T, Daniel-da-Silva AL. Magnetic Driven Nanocarriers for pH-Responsive Doxorubicin Release in Cancer Therapy. Molecules 2020; 25:E333. [PMID: 31947577 PMCID: PMC7024164 DOI: 10.3390/molecules25020333] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin is one of the most widely used anti-cancer drugs, but side effects and selectivity problems create a demand for alternative drug delivery systems. Herein we describe a hybrid magnetic nanomaterial as a pH-dependent doxorubicin release carrier. This nanocarrier comprises magnetic iron oxide cores with a diameter of 10 nm, enveloped in a hybrid material made of siliceous shells and ĸ-carrageenan. The hybrid shells possess high drug loading capacity and a favorable drug release profile, while the iron oxide cores allows easy manipulation via an external magnetic field. The pH responsiveness was assessed in phosphate buffers at pH levels equivalent to those of blood (pH 7.4) and tumor microenvironment (pH 4.2 and 5). The nanoparticles have a loading capacity of up to 12.3 wt.% and a release profile of 80% in 5 h at acidic pH versus 25% at blood pH. In vitro drug delivery tests on human breast cancer and non-cancer cellular cultures have shown that, compared to the free drug, the loaded nanocarriers have comparable antiproliferative effect but a less intense cytotoxic effect, especially in the non-cancer cell line. The results show a clear potential for these new hybrid nanomaterials as alternative drug carriers for doxorubicin.
Collapse
Affiliation(s)
- João Nogueira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| | - Sofia F. Soares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| | - Carlos O. Amorim
- CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (J.S.A.)
| | - João S. Amaral
- CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (J.S.A.)
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (C.S.); (F.M.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| | - Ana L. Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.N.); (S.F.S.); (T.T.)
| |
Collapse
|
40
|
Fuchs S, Shariati K, Ma M. Specialty Tough Hydrogels and Their Biomedical Applications. Adv Healthc Mater 2020; 9:e1901396. [PMID: 31846228 PMCID: PMC7586320 DOI: 10.1002/adhm.201901396] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Hydrogels have long been explored as attractive materials for biomedical applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties and geometries. Nonetheless, conventional hydrogels suffer from weak mechanical properties, restricting their use in persistent load-bearing applications often required of materials used in medical settings. Thus, the fabrication of mechanically robust hydrogels that can prolong the lifetime of clinically suitable materials under uncompromising in vivo conditions is of great interest. This review focuses on design considerations and strategies to construct such tough hydrogels. Several promising advances in the proposed use of specialty tough hydrogels for soft actuators, drug delivery vehicles, adhesives, coatings, and in tissue engineering settings are highlighted. While challenges remain before these specialty tough hydrogels will be deemed translationally acceptable for clinical applications, promising preliminary results undoubtedly spur great hope in the potential impact this embryonic research field can have on the biomedical community.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Riley Robb Hall 322, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2019; 6:134-166. [DOI: 10.1021/acsbiomaterials.9b00802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
42
|
Chiriac AP, Ghilan A, Neamtu I, Nita LE, Rusu AG, Chiriac VM. Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromol Biosci 2019; 19:e1900187. [DOI: 10.1002/mabi.201900187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Alina Ghilan
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular ChemistryLaboratory of Inorganic Polymers 41‐A Grigore Ghica Voda Alley 700487 Iaşi Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical UniversityFaculty of ElectronicsTelecommunications and Information Technology Bd. Carol I no. 11A 700506 Iaşi Romania
| |
Collapse
|
43
|
Novel pH-sensitive interpenetrated network polyspheres of polyacrylamide-g-locust bean gum and sodium alginate for intestinal targeting of ketoprofen: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2019; 180:362-370. [DOI: 10.1016/j.colsurfb.2019.04.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022]
|
44
|
Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.054] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Giri TK, Adhikary T, Maity S. Development of Capsaicin Loaded Hydrogel Beads for In vivo Lipid Lowering Activities of Hyperlipidemic Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/2210303109666190128151605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
The presence of capsaicin in the diet has been revealed to enhance energy expenditure
and it has been used in anti-obesity therapy. The present work investigated the potential antihyperlipidemic
effect of capsaicin loaded hydrogel beads on hyperlipidemic rats. Hydrogels are three
dimensional, hydrophilic, polymeric networks capable of imbibing large amounts of water or biological
fluids.
Methods:
Capsaicin loaded hydrogel beads were prepared by the ionotropic gelation method using
Aluminium Chloride (AlCl₃) as a cross-linking agent. The characterization of hydrogel beads was carried
out by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), and Scanning Electron
Microscopic (SEM) analysis.
Results:
The surface morphology revealed that the prepared beads were spherical in shape. XRD and
DSC study of the hydrogel beads revealed that the drug was homogeneously dispersed in the hydrogel
matrix. The beads showed pH sensitive behavior and when the medium pH was changed from 1.2 to
7.4, the capsaicin release was considerably increased. 100mg/kg body weight of Triton was injected intraperitoneally
in rats to induce hyperlipidemia and it showed elevated levels of serum cholesterol and
triglyceride. Capsaicin loaded hydrogel beads were administered to normal and hyperlipidemic rats for
7 days and the prepared hydrogel beads were significantly reduced high lipid profile in comparison to
free capsaicin.
Conclusion:
The results clearly demonstrated that hydrogel beads can be used as a potential carrier for
delivery of capsaicin to reduce lipid profile.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Tania Adhikary
- NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Subhasis Maity
- NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| |
Collapse
|
46
|
Smart karaya-locust bean gum hydrogel particles for the treatment of hypertension: Optimization by factorial design and pre-clinical evaluation. Carbohydr Polym 2019; 210:274-288. [DOI: 10.1016/j.carbpol.2019.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 11/22/2022]
|
47
|
Effect of Experimental Parameters on the Formation of Hydrogels by Polyelectrolyte Complexation of Carboxymethylcellulose, Carboxymethyl Starch, and Alginic Acid with Chitosan. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1155/2019/3085691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Differences in morphology, pH, and electric charge of chitosan (CS) based hydrogels prepared by complexation with carboxymethylcellulose (CMC), carboxymethylated starch (CMS), and alginic acid (AA) at different polymers ratios and changing the order of addition were studied. CMC/CS and AA/CS hydrogels were amorphous and porous three-dimensional networks, with smaller pores at higher anionic polymer/CS ratios. Gelation time increased the agglomeration in the case of CMC/CS and CMS/CS gels. CMC/CS gels showed negative zeta potential values around −372 mV to −51 mV and CMS/CS gels in the range of −526 mV and −158 mV.
Collapse
|
48
|
Yue Y, Wang X, Han J, Yu L, Chen J, Wu Q, Jiang J. Effects of nanocellulose on sodium alginate/polyacrylamide hydrogel: Mechanical properties and adsorption-desorption capacities. Carbohydr Polym 2019; 206:289-301. [DOI: 10.1016/j.carbpol.2018.10.105] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
49
|
Sonawane RO, Patil SD. Fabrication and statistical optimization of starch-κ-carrageenan cross-linked hydrogel composite for extended release pellets of zaltoprofen. Int J Biol Macromol 2018; 120:2324-2334. [DOI: 10.1016/j.ijbiomac.2018.08.177] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 02/01/2023]
|
50
|
Bialik-Wąs K, Pielichowski K. Bio-hybrid acrylic hydrogels containing metronidazole – loaded poly(acrylic acid-co-methyl methacrylate) nanoparticles and Aloe vera as natural healing agent. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Katarzyna Bialik-Wąs
- Institute of Organic Chemistry and Technology, Cracow University of Technology, Kraków, Poland
| | - Krzysztof Pielichowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Kraków, Poland
| |
Collapse
|