1
|
Zhao J, Chen Y, Xu S, Fang X, Yang F, Li Y. High internal phase emulsion stabilized by soy protein isolate-Rutin complex: Rheological properties, bioaccessibility and in vitro release kinetics. Int J Biol Macromol 2024; 280:135748. [PMID: 39299418 DOI: 10.1016/j.ijbiomac.2024.135748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
High internal phase emulsions (HIPEs) are promising carrier materials for encapsulating and delivering hydrophobic bioactive compounds. By strategically adjusting the composition, particle size, or charge of HIPEs, it is possible to enhance both their stability and the bioaccessibility of hydrophobic polyphenols encapsulated within them. In this study, different soy protein isolate (SPI)-rutin (SPI-R) complexes (formed under various preheating temperatures) were used to stabilize HIPEs, while the particle size, and charge of HIPEs was further adjusted through different homogenization rates. The results demonstrated that an optimal preheating temperature of 70 °C for the complex and a homogenization rate of 15,000 rpm for HIPEs enhanced the stability of the entire emulsion system by producing more uniform and smaller droplet distribution with improved rheological properties. Furthermore, in vitro digestion experiments showed that HIPEs stabilized by the SPI-R complexes (HSR) at optimal homogenization rate had better loading efficiency (98.68 %) and bioaccessibility compared to other groups. Additionally, fitting results from release kinetics confirmed that rutin encapsulated by HSR could achieve sustained release effect. Overall, these findings suggest that HSR has great potential as an effective vehicle for delivering hydrophobic bioactive compounds like rutin within the food industry.
Collapse
Affiliation(s)
- Juyang Zhao
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| | - Yiyu Chen
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Shuo Xu
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Xuwei Fang
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Feiran Yang
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Yuanyuan Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| |
Collapse
|
2
|
Chen Y, Yao M, Peng S, Fang Y, Wan L, Shang W, Xiang D, Zhang W. Development of protein-polyphenol particles to stabilize high internal phase Pickering emulsions by polyphenols' structure. Food Chem 2023; 428:136773. [PMID: 37423104 DOI: 10.1016/j.foodchem.2023.136773] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/07/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Protein-polyphenol colloidal particles are promising stabilizers for high internal phase Pickering emulsions (HIPPEs). However, the relationship between the structure of the polyphenols and its ability to stabilize HIPPEs has not been studied thus far. In this study, bovine serum albumin (BSA)-polyphenols (B-P) complexes were prepared, and their ability to stabilize HIPPEs was investigated. The polyphenols were bound to BSA via non-covalent interactions. Optically isomeric polyphenols formed similar bonds with BSA, whereas a greater number of trihydroxybenzoyl groups or hydroxyl groups in the dihydroxyphenyl moieties of polyphenols increased the B-P interactions. Polyphenols also reduced the interfacial tension and enhanced the wettability at the oil-water interface. The HIPPE stabilized by BSA-tannic acid complex exhibited the highest stability among the B-P complexes and resisted demixing and aggregation during centrifugation. This study promotes the potential applications of polyphenol-protein colloidal particles-stabilized HIPPEs in the food industry.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Mengying Yao
- Public Inspection and Testing Center of Gong'an County, Jingzhou 434300, China
| | - Su Peng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liting Wan
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Dong Xiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| |
Collapse
|
3
|
Chen H, Guo X, Li J, Liu Z, Hu Y, Tao X, Song S, Zhu B. Pickering emulsions synergistically stabilized by sugar beet pectin and montmorillonite exhibit enhanced storage stability and viscoelasticity. Int J Biol Macromol 2023; 242:124788. [PMID: 37164140 DOI: 10.1016/j.ijbiomac.2023.124788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Sugar beet pectin (SBP) is a naturally occurring emulsifying type of pectin fabricated into nanocomposites with montmorillonite (MMT) and then introduced as a stabilizer for high internal phase emulsions (HIPEs). SBP-MMT composites performed well in emulsifying medium-chain triglyceride with an oil volume fraction (φ) of 0.1-0.85 and SBP/MMT mass ratios of 1:0.1-1:0.75. The two representative high internal phase emulsions stabilized by SBP-MMT composites at different SBP/MMT mass ratios exhibited good stability against creaming and coalescence. In these emulsion systems, SBP and MMT formed a network in the continuous phase that markedly improved the rheological properties, including the storage modulus (by 3 orders of magnitude). Confocal light scattering microscopy analysis indicated that a fraction of MMT could work synergistically with SBP in adsorbing on oil droplet surfaces, enhancing stability. SBP-MMT composites stabilized high internal phase emulsions destabilized after the freeze-thaw treatment (-40 °C for 20 h and 25 °C for 4 h) but could be facilely re-emulsified via high-speed shearing. The gastrointestinal digestion behaviors were also modified by stabilizing SBP and MMT. Overall, this work reveals a hitherto undocumented strategy for fabricating highly stable emulsions based on SBP-MMT composites which have huge prospects for application in the food and related industries.
Collapse
Affiliation(s)
- Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoya Tao
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Shuang Song
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China.
| |
Collapse
|
4
|
Zhang Y, Zhou F, Zeng X, Shen P, Yuan D, Zhong M, Zhao Q, Zhao M. pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D 3. Food Chem 2022; 383:132489. [PMID: 35183964 DOI: 10.1016/j.foodchem.2022.132489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Pickering emulsions prepared by food-grade particles have gained growing attention due to their promising application in functional food and pharmaceutical industries. In this study, we successfully fabricated soy peptide-based nanoparticles (SPN) through pH-driven process. Obtained particles with small particle size were surface active and shared intermediate wettability, and they could be well applied as an efficient particulate emulsifier for stabilizing oil-in-water Pickering emulsions at SPN concentration above 0.25 wt%. Furthermore, formed emulsions stabilized with SPN exhibited good protection towards Vitamin D3 against UV irradiation and oxidative deterioration, where controlled release of Vitamin D3in vitro could also be well achieved by modulating particle concentration. The whole process can contribute to a sustainable development of low-value peptide byproducts as functional food ingredients.
Collapse
Affiliation(s)
- Yuanhong Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xiaofang Zeng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Penghui Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Min Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
5
|
Dai H, Wu J, Zhang H, Chen Y, Ma L, Huang H, Huang Y, Zhang Y. Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Yang T, Liu TX, Li XT, Tang CH. Novel nanoparticles from insoluble soybean polysaccharides of Okara as unique Pickering stabilizers for oil-in-water emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.035] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Liu F, Zheng J, Huang CH, Tang CH, Ou SY. Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.047] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Linke C, Drusch S. Pickering emulsions in foods - opportunities and limitations. Crit Rev Food Sci Nutr 2017; 58:1971-1985. [DOI: 10.1080/10408398.2017.1290578] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christina Linke
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Germany
| |
Collapse
|
9
|
|
10
|
Touzouirt S, Limani C, Oukaci F, Ahmed Zaïd T, Nabiev M. Optimisation de la stabilité d'une émulsion de Pickering H/E à l'aide de la méthodologie des surfaces de réponses. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saida Touzouirt
- Faculté des hydrocarbures et de la chimie; Université M'hamed Bougara; Avenue de l'indépendance Boumerdes Algérie
- Laboratoire de Valorisation des Energies Fossiles; Département de Génie Chimique; Ecole Nationale Polytechnique; Ave Pasteur Hassen Badi El-Harrach Alger Algérie
| | - Chimci Limani
- Faculté des sciences; Université Mouloud Mammeri; BP 17 Tizi-Ouzou Algérie
| | - Fetta Oukaci
- Faculté des sciences; Université Mouloud Mammeri; BP 17 Tizi-Ouzou Algérie
| | - Toudert Ahmed Zaïd
- Laboratoire de Valorisation des Energies Fossiles; Département de Génie Chimique; Ecole Nationale Polytechnique; Ave Pasteur Hassen Badi El-Harrach Alger Algérie
| | - Mais Nabiev
- Faculté des hydrocarbures et de la chimie; Université M'hamed Bougara; Avenue de l'indépendance Boumerdes Algérie
| |
Collapse
|
11
|
Effect of spacer length on the interfacial behavior of N,N′-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide gemini surfactants in the absence and presence of ZnO nanoparticles. J Colloid Interface Sci 2017; 486:204-210. [DOI: 10.1016/j.jcis.2016.09.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/21/2022]
|
12
|
Limited coalescence and Ostwald ripening in emulsions stabilized by hydrophobin HFBII and milk proteins. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Reprint of “Soy glycinin as food-grade Pickering stabilizers: Part. III. Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene”. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Liu F, Tang CH. Soy glycinin as food-grade Pickering stabilizers: Part. I. Structural characteristics, emulsifying properties and adsorption/arrangement at interface. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.04.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Liu F, Tang CH. Soy glycinin as food-grade Pickering stabilizers: Part. III. Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.01.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Gel-like pea protein Pickering emulsions at pH3.0 as a potential intestine-targeted and sustained-release delivery system for β-carotene. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Affiliation(s)
- Eric Dickinson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
18
|
Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:1587-97. [PMID: 25564034 DOI: 10.1007/s00253-014-6319-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/07/2023]
Abstract
Hydrophobins are proteins exclusively produced by filamentous fungi. They self-assemble at hydrophilic-hydrophobic interfaces into an amphipathic film. This protein film renders hydrophobic surfaces of gas bubbles, liquids, or solid materials wettable, while hydrophilic surfaces can be turned hydrophobic. These properties, among others, make hydrophobins of interest for medical and technical applications. For instance, hydrophobins can be used to disperse hydrophobic materials; to stabilize foam in food products; and to immobilize enzymes, peptides, antibodies, cells, and anorganic molecules on surfaces. At the same time, they may be used to prevent binding of molecules. Furthermore, hydrophobins have therapeutic value as immunomodulators and can been used to produce recombinant proteins.
Collapse
|
19
|
Lee S, Røn T, Pakkanen KI, Linder M. Hydrophobins as aqueous lubricant additive for a soft sliding contact. Colloids Surf B Biointerfaces 2014; 125:264-9. [PMID: 25466456 DOI: 10.1016/j.colsurfb.2014.10.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/07/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
Abstract
Two type II fungal hydrophobins, HFBI and FpHYD5, have been studied as aqueous lubricant additive at a nonpolar, compliant sliding contact (self-mated poly(dimethylsiloxane) (PDMS) contact) at two different concentrations, 0.1 mg/mL and 1.0 mg/mL. The two hydrophobins are featured as non-glycosylated (HFBI, m.w. ca. 7 kDa) vs glycosylated (FpHYD5, m.w. ca. 10 kDa) proteins. Far UV CD spectra of the two hydrophobins were very similar, suggesting overall structural similarity, but showed a noticeable difference according to the concentration. This is proposed to be related to the formation of multimers at 1.0 mg/mL. Despite 10-fold difference in the bulk concentration, the adsorbed masses of the hydrophobins onto PDMS surface obtained from the two solutions (0.1 and 1.0 mg/mL) were nearly identical, suggesting that a monolayer of the hydrophobins are formed from 0.1 mg/mL solution. PDMS-PDMS sliding interface was effectively lubricated by the hydrophobin solutions, and showed a reduction in the coefficient of friction by as much as ca. two orders of magnitude. Higher concentration solution (1.0 mg/mL) provided a superior lubrication, particularly in low-speed regime, where boundary lubrication characteristic is dominant via 'self-healing' mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO-PEO, with a similar molecular weight. This is ascribed to higher amount of adsorption of the hydrophobins to hydrophobic surfaces from aqueous solution.
Collapse
Affiliation(s)
- Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Troels Røn
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kirsi I Pakkanen
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Markus Linder
- Technical Research Centre of Finland, VTT Biotechnology, FIN-02044 VTT, Finland; Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
20
|
Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.03.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Radulova GM, Danov KD, Kralchevsky PA, Petkov JT, Stoyanov SD. Shear rheology of hydrophobin adsorption layers at oil/water interfaces and data interpretation in terms of a viscoelastic thixotropic model. SOFT MATTER 2014; 10:5777-5786. [PMID: 24981289 DOI: 10.1039/c4sm00901k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here, we investigate the surface shear rheology of class II HFBII hydrophobin layers at the oil/water interface. Experiments in two different dynamic regimes, at a fixed rate of strain and oscillations, have been carried out with a rotational rheometer. The rheological data obtained in both regimes comply with the same viscoelastic thixotropic model, which is used to determine the surface shear elasticity and viscosity, E(sh) and η(sh). Their values for HFBII at oil/water interfaces are somewhat lower than those at the air/water interface. Moreover, E(sh) and η(sh) depend on the nature of oil, being smaller for hexadecane in comparison with soybean-oil. It is remarkable that E(sh) is independent of the rate of strain in the whole investigated range of shear rates. For oil/water interfaces, E(sh) and η(sh) determined for HFBII layers are considerably greater than for other proteins, like lysozyme and β-casein. It is confirmed that the hydrophobin forms the most rigid surface layers among all investigated proteins not only for the air/water, but also for the oil/water interface. The wide applicability of the used viscoelastic thixotropic model is confirmed by analyzing data for adsorption layers at oil/water interfaces from lysozyme and β-casein - both native and cross-linked by enzyme, as well as for films from asphaltene. This model turns out to be a versatile tool for determining the surface shear elasticity and viscosity, E(sh) and η(sh), from experimental data for the surface storage and loss moduli, G' and G''.
Collapse
Affiliation(s)
- Gergana M Radulova
- Department of Chemical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
22
|
Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: In vitro characteristics and in vivo performance. Eur J Pharm Sci 2014; 60:1-9. [DOI: 10.1016/j.ejps.2014.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/14/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022]
|
23
|
Hoffmann H, Reger M. Emulsions with unique properties from proteins as emulsifiers. Adv Colloid Interface Sci 2014; 205:94-104. [PMID: 24161225 DOI: 10.1016/j.cis.2013.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Many proteins are surface active molecules and form stable emulsions. In these emulsions, the protein covered oil droplets behave as sticky droplets even when they are ionically charged. As a result of the stickiness of the droplets the emulsions have gel-like properties. The stickiness is due to the multipolar nature of the proteins in contrast to the bipolar nature of surfactants or other amphiphilic compounds that form emulsions with repulsive droplets. Stable emulsions are also formed from particles like clays to which proteins are adsorbed. These hybrid compounds form even more stable emulsions with stronger elastic properties than clays and proteins on their own. These so called pickering emulsions have paste-like properties and do not flow. The scaffolding network of the crosslinked protein bilayers on the droplets is so strong that both the water and the oil can be removed from the emulsions by freeze drying without collapse of the scaffold. The resulting sponge can be used again for the uptake of both water and oil. Emulsions which are prepared from different proteins differ mainly in their elastic properties.
Collapse
|
24
|
Fereidooni Moghadam T, Azizian S. Effect of ZnO Nanoparticle and Hexadecyltrimethylammonium Bromide on the Dynamic and Equilibrium Oil–Water Interfacial Tension. J Phys Chem B 2014; 118:1527-34. [DOI: 10.1021/jp4106986] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Saeid Azizian
- Department of Physical Chemistry,
Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
25
|
Edge-modified amphiphilic Laponite nano-discs for stabilizing Pickering emulsions. J Colloid Interface Sci 2013; 410:27-32. [DOI: 10.1016/j.jcis.2013.07.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/31/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022]
|
26
|
Liu F, Tang CH. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8888-8898. [PMID: 23977961 DOI: 10.1021/jf401859y] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In recent years, there have been increasing interests in developing food-grade Pickering stabilizers, due to their potential applications in formulations of novel functional foods. The present work was to investigate the potential of soy proteins to be developed into a kind of Pickering-like stabilizer for oil-in-water emulsions. The nanoparticle aggregates of soy protein isolate (SPI) were formed by sequential treatments of heating at 95 °C for 15 min and then electrostatic screening with NaCl addition. The particle size and microstructure of these aggregates were characterized using dynamic light scattering and atomic force microscopy, indicating that the fabricated nanoparticle aggregates were ∼100 nm in size with more surface hydrophobic nature (relative to unheated SPI). The influence of particle concentration (c; 0.5-6.0%, w/w) and increasing oil fraction (ϕ; in the range 0.2-0.6) on the droplet size and coalescence and/or creaming stability of the emulsions stabilized by these nanoparticle aggregates was investigated. The results showed that, at ϕ = 0.2, increasing the c resulted in a progressive but slight decrease in droplet size, and improved the stability against coalescence and creaming; at a specific c, the creaming stability was progressively increased by increasing the ϕ, with better improvement observed at a higher c (e.g., 6.0% vs 2.0%). The improvement of creaming stability was largely associated with the formation of a gel-like network that could entrap the oil droplets within the network. The observations are generally consistent with those observed for the conventional Pickering emulsions, confirming that soy proteins could be applied as a kind of effective Pickering-like stabilizer. The finding may have important implications for the design and fabrication of protein-based emulsion formulations, and even for the development of soy protein products with some unique functions. To the authors' knowledge, this is the first work to report that heat-induced soy protein aggregates exhibit a good potential to act as Pickering-type stabilizers.
Collapse
Affiliation(s)
- Fu Liu
- Department of Food Science and Technology and ‡State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| | | |
Collapse
|
27
|
Green AJ, Littlejohn KA, Hooley P, Cox PW. Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.04.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Dickinson E. Stabilising emulsion-based colloidal structures with mixed food ingredients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:710-721. [PMID: 23280883 DOI: 10.1002/jsfa.6013] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/01/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
The physical scientist views food as a complex form of soft matter. The complexity has its origin in the numerous ingredients that are typically mixed together and the subtle variations in microstructure and texture induced by thermal and mechanical processing. The colloid science approach to food product formulation is based on the assumption that the major product attributes such as appearance, rheology and physical stability are determined by the spatial distribution and interactions of a small number of generic structural entities (biopolymers, particles, droplets, bubbles, crystals) organised in various kinds of structural arrangements (layers, complexes, aggregates, networks). This review describes some recent advances in this field with reference to three discrete classes of dispersed systems: particle-stabilised emulsions, emulsion gels and aerated emulsions. Particular attention is directed towards explaining the crucial role of the macromolecular ingredients (proteins and polysaccharides) in controlling the formation and stabilisation of the colloidal structures. The ultimate objective of this research is to provide the basic physicochemical insight required for the reliable manufacture of novel structured foods with an appealing taste and texture, whilst incorporating a more healthy set of ingredients than those found in many existing traditional products.
Collapse
Affiliation(s)
- Eric Dickinson
- School of Food Science and Nutrition, University of Leeds, Leeds, UK.
| |
Collapse
|