Facile preparation of porous In2TiO5-rutile composite nanotubes by electrospinning and sensitivity enhancement in NO2 gas at room temperature.
J Colloid Interface Sci 2015;
466:72-9. [PMID:
26707774 DOI:
10.1016/j.jcis.2015.12.020]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/22/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022]
Abstract
Porous In2TiO5-rutile composite nanotubes (IRCNs) were synthesized via a facile one-step synthesis of the electrospinning approach by using tetrabutyl titanate (TBT), indium nitrate, and polyvinylpyrrolidone (PVP) as a soft-template followed by two-step calcination. The porous composite nanotubes with a bigger surface area have single-crystalline rutile with (110) crystal plane, and the sensor fabricated by it with a content of 12.5 at% In2TiO5 (IRCN2) has shown a response of 4.04 to 100 ppm NO2 at room temperature (RT), which was 20 times as high as the pure In2TiO5 sensor under the same conditions. The IRCN2 sensor had excellent selectivity compared with other gas species such as CO, H2, NH3, H2S and CH4 at RT. The enhanced sensing properties were attributed to the synergy of integrated In2TiO5 and rutile, heterojunction of single-crystal, and its nanotubular structure. Hence, the IRCN2 sensor has a potential application for the development of novel gas sensors at RT.
Collapse