1
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
2
|
Li Q, Lianghao Y, Shijie G, Zhiyi W, Yuanting T, Cong C, Chun-Qin Z, Xianjun F. Self-assembled nanodrug delivery systems for anti-cancer drugs from traditional Chinese medicine. Biomater Sci 2024; 12:1662-1692. [PMID: 38411151 DOI: 10.1039/d3bm01451g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Traditional Chinese medicine (TCM) is a combination of raw herbs and herbal extracts with a plethora of documented beneficial bioactivities, which has unique advantages in anti-tumor therapy, and many of its major bioactive molecules have been identified in recent years due to advances in chemical separation and structural analysis. However, the major chemical classes of plant-derived bioactive compounds frequently possess chemical properties, including poor water solubility, stability, and bioavailability, that limit their therapeutic application. Alternatively, natural small molecules (NSMs) containing these components possess modifiable groups, multiple action sites, hydrophobic side chains, and a rigid skeleton with self-assembly properties that can be exploited to construct self-assembled nanoparticles with therapeutic effects superior to their individual constituents. For instance, the construction of a self-assembled nanodrug delivery system can effectively overcome the strong hydrophobicity and poor in vivo stability of NSMs, thereby greatly improving their bioavailability and enhancing their anti-tumor efficacy. This review summarizes the self-assembly methods, mechanisms, and applications of a variety of NSMs, including terpenoids, flavonoids, alkaloids, polyphenols, and saponins, providing a theoretical basis for the subsequent research on NSMs and the development of SANDDS.
Collapse
Affiliation(s)
- Qiao Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Yuan Lianghao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Gao Shijie
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Wang Zhiyi
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Tang Yuanting
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chen Cong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China.
| | - Zhao Chun-Qin
- Academy of Chinese Medicine Literature and Culture, Key Laboratory of Classical Theory of Traditional Chinese Medicine, Ministry of Education, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Fu Xianjun
- Marine Traditional Chinese Medicine Research Centre, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, P. R. China.
| |
Collapse
|
3
|
Yao D, Wang N, Dai W, Liu Y, Tian K, Wang H, Liu Y. Degradation of benzo [a] pyrene in the soil enhanced by soapwort: The role of soapwort and functional microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131993. [PMID: 37423134 DOI: 10.1016/j.jhazmat.2023.131993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The limited bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soils poses a challenge for their biodegradation. We hypotheses soapwort (Saponaria officinalis L.) as a factory in-situ providing biosurfactant, which could effectively promote the BaP removal by exogenous or native functional microbes. Rhizo-box and microcosm experiments were conducted to analyze the phyto-microbial remediation mechanism of soapwort, a plant that excretes biosurfactants known as saponins, and combined with two exogenous strains (P. chrysosporium and/or B. subtilis) for benzo[a]pyrene (BaP)-contaminated soils. The results revealed that the natural attenuation treatment (CK) BaP achieved only a 15.90% BaP removal rate after 100 days. In contrast, soapwort (SP), soapwort-bacteria (SPB), soapwort-fungus (SPF), soapwort- bacteria - fungus (SPM) mediated rhizosphere soils treatments yielded removal rates of 40.48%, 42.42%, 52.37%, and 62.57%, respectively. The analysis of the microbial community structure suggested that soapwort stimulated the introduction and native functional microorganisms, such as Rhizobiales, Micrococcales, and Clostridiales, which contributed to BaP removal via metabolic pathways. Furthermore, the efficient BaP removal was attributed to saponins, amino acids, and carbohydrates, which facilitated mobilization, solubilization of BaP, and microbial activity. In conclusion, our study highlights the potential of soapwort and specific microbial strains to effectively remediate PAH-contaminated soils.
Collapse
Affiliation(s)
- Dandan Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Ning Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Wei Dai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yang Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Kun Tian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Hui Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Yun Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| |
Collapse
|
4
|
Hao Z, Li C, Yu J, Zhang X, Ran F, Dai L, Shen Z, Qiu Z, Wang J. Lignin particles as green pore-forming agents for the fabrication of microporous polysulfone membranes. Int J Biol Macromol 2023; 241:124603. [PMID: 37105253 DOI: 10.1016/j.ijbiomac.2023.124603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Templating polymeric membranes with micro-nano-scaled solid materials is an effective method to simultaneously improve the water flux and retention ratio. However, the fabrication of a green, recyclable, and size-controlled template material remains a challenge. Here, a new green pore-forming agent, lignin particles (LP), was developed to prepare porous polysulfone (PSF) membranes via the phase inversion technique. A series of LP have uniform sizes from ~200 nm to ~1800 nm. The performances of the templated PSF membranes cast at different sizes and contents of LP were examined for their surface and crosssection morphologies. The LP-templated PSF membranes displayed a remarkable enhancement in flux, porosity, and moisture content. Particularly, the PSF membranes cast with LP from ~200 to 1800 nm broke the traditional trade-off to a certain degree, which possessed stable retentions of bovine serum albumin (> 85 %) and significantly improved water flux (174.275 to 254.775 L m-2 h-1). In addition, the LP pore-forming agent is low-cost and environmentally friendly as it was prepared from industrial by-products and can be easily recycled. Overall, this study shows that lignin particles are green pore-forming agents that can be used for the fabrication of porous polymeric membranes with improved performance for water treatment.
Collapse
Affiliation(s)
- Zhenxin Hao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Chenyu Li
- Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jie Yu
- Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China; School of Water and Environment, Chang'an University, Xi'an 710064, China
| | - Xinyuan Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fangli Ran
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; National Engineering Lab for Pulp and Paper, China National Pulp and Paper Research Institute Co., Ltd, Beijing 100102, China.
| | - Zhiqiang Shen
- Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhigang Qiu
- Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Environment and Health, Institude of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
5
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Yang Y, Ren R, Chen Q, Zhang Q, Wu J, Yin D. Coptis chinensis polysaccharides dynamically influence the paracellular absorption pathway in the small intestine by modulating the intestinal mucosal immunity microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154322. [PMID: 35839736 DOI: 10.1016/j.phymed.2022.154322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Traditional Chinese Medicine decoctions (TCMDs) can be used to prepare outstanding pharmaceutical preparations by the patient themselves. Small molecular active ingredients and macromolecular polysaccharides are inevitably co-existed in TCMDs. Different from the pharmacological synergies among small molecules, the macromolecular polysaccharides in TCMDs might contribute to disease treatment in several ways, although it is frequently overlooked. HYPOTHESIS/PURPOSE This study proposes that the oral bioavailability of the water-insoluble alkaloids of Coptis chinensis Franch. (Ranunculaceae) (C. chinensis) decoction may be attributed to the co-existing C. chinensis polysaccharides (CCPs) dynamically influencing the small intestine microenvironment and regulating the modulation of the paracellular absorption pathway. METHODS First, the effects of CCPs on the oral bioavailability of the main active ingredient of C. chinensis, berberine, were evaluated in vivo. Next, a series of in situ experimental models of intestinal perfusion and models of isolated jejunal mucosa, Caco-2 cell monolayer membranes, and microfold-like cells were established to assess the correlation among CCPs, intestinal mucosal immunity, and paracellular absorption in the small intestine. RESULTS It was observed that CCPs could be endocytosed by the microfold cells on the surface of Peyer's patches, allowing CCPs to activate the lymphocytes, modulate the balance of Th1/Th2, control the secretion of immune effectors IFN-γ and IL-4, and finally regulate the tight junctions in the intestinal epithelial cells. This was a dynamic process with the movement of CCPs in the gastrointestinal tract that altered the flora distribution and functioning of the TLR/NF-κB signal pathway in the small intestine. CONCLUSION The dynamical regulation of CCP on the immune microenvironment of small intestine is responsible for its promotion on the health controlling effects of C. chinensis in traditional dosage forms of decoction.
Collapse
Affiliation(s)
- Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei 230012, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang Rd, Nanjing 210009, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei 230012, China
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei 230012, China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei 230012, China
| | - Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
7
|
Hou Y, Zou L, Li Q, Chen M, Ruan H, Sun Z, Xu X, Yang J, Ma G. Supramolecular assemblies based on natural small molecules: Union would be effective. Mater Today Bio 2022; 15:100327. [PMID: 35757027 PMCID: PMC9214787 DOI: 10.1016/j.mtbio.2022.100327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Natural products have been used to prevent and treat human diseases for thousands of years, especially the extensive natural small molecules (NSMs) such as terpenoids, steroids and glycosides. A quantity of studies are confined to concern about their chemical structures and pharmacological activities at the monomolecular level, whereas the spontaneous assemblies of them in liquids yielding supramolecular structures have not been clearly understood deeply. Compared to the macromolecules or synthetic small molecular compounds, NSMs have the inherent advantages of lower toxicity, better biocompatibility, biodegradability and biological activity. Self-assembly of single component and multicomponent co-assembly are unique techniques for designing supramolecular entities. Assemblies are of special significance due to their range of applications in the areas of drug delivery systems, pollutants capture, materials synthesis, etc. The assembled mechanism of supramolecular NSMs which are mainly driven by multiple non-covalent interactions are summarized. Furthermore, a new hypothesis aimed to interpret the integration effects of multi-components of traditional Chinese medicines (TCMs) inspired on the theory of supramolecular assembly is proposed. Generally, this review can enlighten us to achieve the qualitative leap for understanding natural products from monomolecule to supramolecular structures and multi-component interactions, which is valuable for the intensive research and application.
Collapse
Affiliation(s)
- Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
8
|
Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, Bai D. Study on Supramolecules in Traditional Chinese Medicine Decoction. Molecules 2022; 27:3268. [PMID: 35630743 PMCID: PMC9144598 DOI: 10.3390/molecules27103268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
With the application of the concept of supramolecular chemistry to various fields, a large number of supramolecules have been discovered. The chemical components of traditional Chinese medicine have various sources and unique structures. During the high-temperature boiling process, various active components form supramolecules due to complex interactions. The supramolecular structure in a traditional Chinese medicine decoction can not only be used as a drug carrier to promote the absorption and distribution of medicinal components but may also have biological activities superior to those of single active ingredients or their physical mixtures. By summarizing the relevant research results over recent years, this paper introduces the research progress regarding supramolecules in various decoctions, laying a foundation for further research into supramolecules in traditional Chinese medicine decoctions, and provides a new perspective for revealing the compatibility mechanisms of traditional Chinese medicine, guiding clinical medications, and developing new nanometers materials.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Yingying Dong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Qin Guo
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Huanhuan Wang
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Mei Feng
- Basic Medical School, Shanxi University of Chinese Medicine, Xianyang 712046, China; (H.W.); (M.F.)
| | - Zhengshen Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| | - Dong Bai
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.G.); (Y.D.); (Q.G.); (Z.Y.)
| |
Collapse
|
9
|
Tsibranska S, Ivanova A, Tcholakova S, Denkov N. Structure and Undulations of Escin Adsorption Layer at Water Surface Studied by Molecular Dynamics. Molecules 2021; 26:6856. [PMID: 34833947 PMCID: PMC8618613 DOI: 10.3390/molecules26226856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
The saponin escin, extracted from horse chestnut seeds, forms adsorption layers with high viscoelasticity and low gas permeability. Upon deformation, escin adsorption layers often feature surface wrinkles with characteristic wavelength. In previous studies, we investigated the origin of this behavior and found that the substantial surface elasticity of escin layers may be related to a specific combination of short-, medium-, and long-range attractive forces, leading to tight molecular packing in the layers. In the current study, we performed atomistic molecular dynamics simulations of 441 escin molecules in a dense adsorption layer with an area per molecule of 0.49 nm2. We found that the surfactant molecules are less submerged in water and adopt a more upright position when compared to the characteristics determined in our previous simulations with much smaller molecular models. The number of neighbouring molecules and their local orientation, however, remain similar in the different-size models. To maintain their preferred mutual orientation, the escin molecules segregate into well-ordered domains and spontaneously form wrinkled layers. The same specific interactions (H-bonds, dipole-dipole attraction, and intermediate strong attraction) define the complex internal structure and the undulations of the layers. The analysis of the layer properties reveals a characteristic wrinkle wavelength related to the surface lateral dimensions, in qualitative agreement with the phenomenological description of thin elastic sheets.
Collapse
Affiliation(s)
- Sonya Tsibranska
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria; (S.T.); (S.T.); (N.D.)
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria; (S.T.); (S.T.); (N.D.)
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, University of Sofia, 1164 Sofia, Bulgaria; (S.T.); (S.T.); (N.D.)
| |
Collapse
|
10
|
Verstraeten SL, Lorent JH, Mingeot-Leclercq MP. Lipid Membranes as Key Targets for the Pharmacological Actions of Ginsenosides. Front Pharmacol 2020; 11:576887. [PMID: 33041822 PMCID: PMC7518029 DOI: 10.3389/fphar.2020.576887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
In this review, we will focus on the activity of ginsenosides on membranes and their related effects, from physicochemical, biophysical, and pharmacological viewpoints. Ginsenosides are a class of saponins with a large structural diversity and a wide range of pharmacological effects. These effects can at least partly be related to their activity on membranes which results from their amphiphilic character. Some ginsenosides are able to interact with membrane lipids and associate into nanostructures, making them possible adjuvants for vaccines. They are able to modulate membrane biophysical properties such as membrane fluidity, permeability or the formation of lateral domains with some degree of specificity towards certain cell types such as bacteria, fungi, or cancer cells. In addition, they have shown antioxidant properties which protect membranes from lipid oxidation. They further displayed some activity on membrane proteins either through direct or indirect interaction. We investigate the structure activity relationship of ginsenosides on membranes and discuss the implications and potential use as anticancer, antibacterial, and antifungal agents.
Collapse
Affiliation(s)
- Sandrine L Verstraeten
- Cellular & Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Joseph H Lorent
- Cellular & Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium.,Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Marie-Paule Mingeot-Leclercq
- Cellular & Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
11
|
Slimane M, Gaye I, Ghoul M, Chebil L. Mesoscale Modeling and Experimental Study of Quercetin Organization as Nanoparticles in the Poly-lactic-co-glycolic Acid/Water System under Different Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manel Slimane
- CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
- Université de Lorraine, LRGP, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
| | - Ibrahima Gaye
- CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
- Université de Lorraine, LRGP, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
| | - Mohamed Ghoul
- CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
- Université de Lorraine, LRGP, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
| | - Latifa Chebil
- CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
- Université de Lorraine, LRGP, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
| |
Collapse
|
12
|
Solubilization of phloretin via steviol glycoside-based solid dispersion and micelles. Food Chem 2019; 308:125569. [PMID: 31644967 DOI: 10.1016/j.foodchem.2019.125569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
In this study, the solubility of phloretin (PT) was enhanced via steviol glycoside (STE)-based micelle (MC) and solid dispersion (SD). Computer simulation, characterization, interaction with serum albumin (SA) and in vitro release were carried out to investigate the solubilization mechanisms and the difference in their solubilization capacities. For PT-loaded MC (STE-PT MC), PT was encapsulated into the hydrophobic core of a spherical micelle with a droplet diameter of 5 nm. For PT-loaded SD (STE-PT SD), PT was completely dispersed with the amorphous state in STE. Most of those PTs were directly dissolved in water, and few were encapsulated by STE micelles. The amorphous state combined with relatively large micelles contributed to the high solubilization capacity of STE-PT SD. In addition, PT of STE-PT SD exhibited a higher dissolution rate and more effective interaction with SA than that of STE-PT MC. No undesirable chemical interaction between PT and STE occurred.
Collapse
|
13
|
Tsibranska S, Ivanova A, Tcholakova S, Denkov N. Structure of Dense Adsorption Layers of Escin at the Air-Water Interface Studied by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12876-12887. [PMID: 31487191 DOI: 10.1021/acs.langmuir.9b02260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Saponins are natural surfactants with high surface activity and unique surface properties. Escin is a triterpenoid saponin which has unusually high surface viscoelasticity [Golemanov et al. Soft Matter 2013, 9, 5738] and low permittivity to molecular gas diffusion of its adsorption layers. In our previous study [Tsibranska et al. Langmuir 2017, 33, 8330], we investigated the molecular origin of this unconventional behavior and found that escin molecules rapidly assemble in a compact and stable surface cluster. This behavior was explained with long-range attraction between the hydrophobic aglycones combined with intermediate dipole-dipole attraction and strong short-range hydrogen bonds between the sugar residues in the adsorbed escin molecules. In this study, we performed atomistic molecular simulations of escin molecules in dense adsorption layers with two different areas per molecule. The results show that the surfactant molecules in these systems are much less submerged in water and adopt a more upright position compared to the dilute layers studied previously. A significant number of trapped water molecules are located around the hydrophilic groups placed above the water equimolecular surface to solvate them in the dense layer. To maintain the preferred orientation of the escin molecules with respect to the interface, the most compact adsorption layer acquires a significant spontaneous curvature. The substantial elasticity of the neutral escin layers, as in our previous study, is explained with the presence of a specific interaction, which is intermediate between hydrogen bonding and dipole-dipole attraction (populated lengths in the range 0.16 to >0.35 nm), supplemented by substantial flexibility of the surfactant heads, optimal curvature of the interface, and significant normal displacement of the molecules to allow their tight surface packing. The simulations reveal long-range order within the layers, which signifies the role of the collective behavior of the saponin molecules in such dense adsorption layers.
Collapse
|
14
|
Otto DP, Combrinck J, Otto A, Tiedt LR, de Villiers MM. Dissipative Particle Dynamics Investigation of the Transport of Salicylic Acid through a Simulated In Vitro Skin Permeation Model. Pharmaceuticals (Basel) 2018; 11:ph11040134. [PMID: 30563088 PMCID: PMC6316323 DOI: 10.3390/ph11040134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 11/16/2022] Open
Abstract
Permeation models are often used to determine diffusion properties of a drug through a membrane as it is released from a delivery system. In order to circumvent problematic in vivo studies, diffusion studies can be performed in vitro, using (semi-)synthetic membranes. In this study salicylic acid permeation was studied, employing a nitrocellulose membrane. Both saturated and unsaturated salicylic acid solutions were studied. Additionally, the transport of salicylic acid through the nitrocellulose membrane was simulated by computational modelling. Experimental observations could be explained by the transport mechanism that was revealed by dissipative particle dynamics (DPD) simulations. The DPD model was developed with the aid of atomistic scale molecular dynamics (AA-MD). The choice of a suitable model membrane can therefore, be predicted by AA-MD and DPD simulations. Additionally, the difference in the magnitude of release from saturated and unsaturated salicylic acid and solutions could also be observed with DPD. Moreover, computational studies can reveal hidden variables such as membrane-permeant interaction that cannot be measured experimentally. A recommendation is made for the development of future model permeation membranes is to incorporate computational modelling to aid the choice of model.
Collapse
Affiliation(s)
- Daniel P Otto
- Research Focus Area for Chemical Resource Beneficiation, Laboratory for Analytical Services, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa.
| | - Johann Combrinck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa.
| | - Anja Otto
- Centre of Excellence for Pharmaceutical Sciences, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa.
| | - Louwrens R Tiedt
- Research Focus Area for Chemical Resource Beneficiation, Laboratory for Electron Microscopy, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa.
| | - Melgardt M de Villiers
- School of Pharmacy, University of Wisconsin⁻Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
15
|
Slimane M, Ghoul M, Chebil L. Mesoscale Modeling Approach To Study the Dispersion and the Solubility of Flavonoids in Organic Solvents. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manel Slimane
- CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
- Université de Lorraine, LRGP, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
| | - Mohamed Ghoul
- CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
- Université de Lorraine, LRGP, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
| | - Latifa Chebil
- CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
- Université de Lorraine, LRGP, UMR 7274, 2 Avenue de la Forêt de Haye, TSA 40602, Vandœuvre-lès-Nancy F-54518, France
| |
Collapse
|
16
|
Jarzębski M, Smułek W, Kościński M, Białopiotrowicz T, Kaczorek E. Verbascum nigrum L. (mullein) extract as a natural emulsifier. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Xu J, Wang Z, Gao J, Li C, Sun S, Hu S. Dissipative particle dynamics simulations reveal the pH-driven micellar transition pathway of monorhamnolipids. J Colloid Interface Sci 2017; 506:493-503. [DOI: 10.1016/j.jcis.2017.07.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
|
18
|
Tsibranska S, Ivanova A, Tcholakova S, Denkov N. Self-Assembly of Escin Molecules at the Air-Water Interface as Studied by Molecular Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8330-8341. [PMID: 28749143 DOI: 10.1021/acs.langmuir.7b01719] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Escin belongs to a large class of natural biosurfactants, called saponins, that are present in more than 500 plant species. Saponins are applied in the pharmaceutical, cosmetics, and food and beverage industries due to their variously expressed bioactivity and surface activity. In particular, escin adsorption layers at the air-water interface exhibit an unusually high surface elastic modulus (>1100 mN/m) and a high surface viscosity (ca. 130 N·s/m). The molecular origin of these unusual surface rheological properties is still unclear. We performed classical atomistic dynamics simulations of adsorbed neutral and ionized escin molecules to clarify their orientation and interactions on the water surface. The orientation and position of the escin molecules with respect to the interface, the intermolecular interactions, and the kinetics of molecular aggregation into surface clusters are characterized in detail. Significant differences in the behavior of the neutral and the charged escin molecules are observed. The neutral escin rapidly assembles in a compact and stable surface cluster. This process is explained by the action of long-range attraction between the hydrophobic aglycones, combined with intermediate dipole-dipole attraction and short-range hydrogen bonds between the sugar residues in escin molecules. The same interactions are expected to control the viscoelastic properties of escin adsorption layers.
Collapse
Affiliation(s)
- Sonya Tsibranska
- Department of Chemical and Pharmaceutical Engineering and ‡Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Department of Chemical and Pharmaceutical Engineering and ‡Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering and ‡Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering and ‡Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
19
|
Li J, Qiao Y, Wu Z. Nanosystem trends in drug delivery using quality-by-design concept. J Control Release 2017; 256:9-18. [PMID: 28414149 DOI: 10.1016/j.jconrel.2017.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023]
Abstract
Quality by design (QbD) has become an inevitable trend because of its benefits for product quality and process understanding. Trials have been conducted using QbD in nanosystems' optimization. This paper reviews the application of QbD for processing nanosystems and summarizes the application procedure. It provides prospective guidelines for future investigations that apply QbD to nanosystem manufacturing processes. Employing the QbD concept in this way is a novel area in nanosystem quality.
Collapse
Affiliation(s)
- Jing Li
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China.
| |
Collapse
|
20
|
Dai X, Ding H, Yin Q, Wan G, Shi X, Qiao Y. Dissipative particle dynamics study on self-assembled platycodin structures: the potential biocarriers for drug delivery. J Mol Graph Model 2015; 57:20-6. [PMID: 25622131 DOI: 10.1016/j.jmgm.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/10/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
Abstract
Platycodin, as a kind of plant based biosurfactants, are saponins which derived from the root of Platycodon grandiflorum A. DC. It has been confirmed that platycodin have the potential to enhance the solubility of hydrophobic drugs and function as the drug carrier, which depends on their micellization over critical micelle concentration (CMC) in aqueous solutions. With the purpose of investigating the effects of influencing factors on the micellization behavior of platycodin and obtaining the phase behavior details at a mesoscopic level, dissipative particle dynamics (DPD) simulations method has been adopted in this study. The simulations reveal that a rich variety of aggregates morphologies will appear with changes of structure or the concentration of saponins, including spherical, ellipse and oblate micelles and vesicles, multilamellar vesicles (MLVs), multicompartment vesicles (MCMs), tubular and necklace-like micelle. They can be formed spontaneously from a randomly generated initial state and the result has been represented in the phase diagrams. Furthermore, deeper explorations have been done on the concentration-dependent structure variation of spherical vesicles as well as the formation mechanism of MLVs. This work provides insight into the solubilization system formed by platycodin, and may serve as guidance for further development and application in pharmaceutical field of platycodin and other saponins.
Collapse
Affiliation(s)
- Xingxing Dai
- Beijing University of Chinese Medicine, Beijing 100102, China; Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China
| | - Haiou Ding
- Civil Aviation General Hospital, Beijing 100123, China
| | - Qianqian Yin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Guang Wan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, Beijing 100102, China; Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, Beijing 100102, China; Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China.
| |
Collapse
|
21
|
Otto DP, Otto A, de Villiers MM. Differences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery. Expert Opin Drug Deliv 2014; 12:763-77. [PMID: 25516397 DOI: 10.1517/17425247.2015.988135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The increase in the development of novel nanoparticle drug delivery systems makes the choice between micro- and nanoscale drug delivery systems ubiquitous. Changes in physical and chemical properties between micro- to nanosized particles give them different properties that influence their physiological, anatomical and clinical behavior and therefore potential application. AREAS COVERED This review focuses on the effect changes in the surface-to-volume ratio have on the thermal properties, solubility, dissolution and crystallization of micro- versus nanosized drug delivery systems. With these changes in the physicochemical properties in mind, the review covers computational and biophysical approaches to the design and evaluation of micro- and nanodelivery systems. The emphasis of the review is on the effect these properties have on clinical performance in terms of drug release, tissue retention, biodistribution, efficacy, toxicity and therefore choice of delivery system. EXPERT OPINION Ultimately, the choice between micro- and nanometer-sized delivery systems is not straightforward. However, if the fundamental differences in physical and chemical properties are considered, it can be much easier to make a rational choice of the appropriate drug delivery system size.
Collapse
Affiliation(s)
- Daniel P Otto
- North-West University, Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group , Potchefstroom 2531 , South Africa
| | | | | |
Collapse
|
22
|
Geng JL, Dai Y, Yao ZH, Qin ZF, Wang XL, Qin L, Yao XS. Metabolites profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J Pharm Biomed Anal 2014; 96:90-103. [DOI: 10.1016/j.jpba.2014.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/28/2022]
|
23
|
Experimental and mesoscale computational dynamics studies of the relationship between solubility and release of quercetin from PEG solid dispersions. Int J Pharm 2013; 456:282-92. [DOI: 10.1016/j.ijpharm.2013.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 12/18/2022]
|