1
|
Lubitz LJ, Rieger H, Leneweit G. Emulsifying mechanisms of phospholipids in high-pressure homogenization of perfluorocarbon nanoemulsions. SOFT MATTER 2024; 20:8373-8384. [PMID: 39297181 DOI: 10.1039/d4sm00828f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Phospholipids are the most ubiquitous emulsifiers in foods, beverages, pharmaceuticals, and human physiology, but their emulsifying properties are extremely complex. Differential analyses of mechanisms contributing to their functionality are presented in a modular approach. Addition of cholesterol to a natural phospholipid blend disturbs emulsification beyond specific thresholds for size, polydispersity and formation of emulsifying monolayers. Beyond a ratio of lipid concentration to dispersed volume of 1 mM per 1% (v/v) of perfluorocarbon (PFC), phospholipids no longer form monolayers but instead form triple layers that emulsify the PFC. Using synthetic saturated phospholipids, it can be shown that emulsification is most successful for fatty acids closely below their main transition temperature. Phospholipid head groups are more effective for emulsification the more they increase the area per molecule or the zeta potential. Including a comparison with literature results, it can be shown that high molecular weight emulsifiers like proteins are not dependent on the ratio of viscosities η of the dispersed phase to the continuous phase, ηD/ηC. In contrast, smaller molecular weight emulsifiers like phospholipids show a mild increase in effectiveness with rising ηD/ηC, although this increase is not as strong as that observed for low molecular weight detergents. Ruptures of highly resistant emulsifying interfacial layers obviously lead to direct droplet break-up, irrespective of the resistance of a high-viscosity droplet. The lower the break-up resistance of an emulsifier, the more is it governed by the bulk viscosity of the dispersed phase. Our results allow the preparation of a phospholipid-stabilized emulsion with optimized emulsification settings for pharmaceutical applications.
Collapse
Affiliation(s)
- Larissa J Lubitz
- ABNOBA GmbH, Allmendstr. 55, Niefern-Öschelbronn 75223, Germany.
- Carl Gustav Carus-Institute, Association for the Promotion of Cancer Therapy, Niefern-Öschelbronn 75223, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Mechanical Process Engineering and Mechanics, Straße am Forum 8, Karlsruhe 76131, Germany
| | - Harden Rieger
- ABNOBA GmbH, Allmendstr. 55, Niefern-Öschelbronn 75223, Germany.
- Carl Gustav Carus-Institute, Association for the Promotion of Cancer Therapy, Niefern-Öschelbronn 75223, Germany
| | - Gero Leneweit
- ABNOBA GmbH, Allmendstr. 55, Niefern-Öschelbronn 75223, Germany.
- Carl Gustav Carus-Institute, Association for the Promotion of Cancer Therapy, Niefern-Öschelbronn 75223, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Mechanical Process Engineering and Mechanics, Straße am Forum 8, Karlsruhe 76131, Germany
| |
Collapse
|
2
|
Arribas Perez M, Beales PA. Biomimetic Curvature and Tension-Driven Membrane Fusion Induced by Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13917-13931. [PMID: 34788054 DOI: 10.1021/acs.langmuir.1c02492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusion events in living cells are intricate phenomena that require the coordinate action of multicomponent protein complexes. However, simpler synthetic tools to control membrane fusion in artificial cells are highly desirable. Native membrane fusion machinery mediates fusion, driving a delicate balance of membrane curvature and tension between two closely apposed membranes. Here, we show that silica nanoparticles (SiO2 NPs) at a size close to the cross-over between tension-driven and curvature-driven interaction regimes initiate efficient fusion of biomimetic model membranes. Fusion efficiency and mechanisms are studied by Förster resonance energy transfer and confocal fluorescence microscopy. SiO2 NPs induce a slight increase in lipid packing likely to increase the lateral tension of the membrane. We observe a connection between membrane tension and fusion efficiency. Finally, real-time confocal fluorescence microscopy reveals three distinct mechanistic pathways for membrane fusion. SiO2 NPs show significant potential for inclusion in the synthetic biology toolkit for membrane remodeling and fusion in artificial cells.
Collapse
Affiliation(s)
- Marcos Arribas Perez
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Paul A Beales
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
3
|
Kim S, Geryak RD, Zhang S, Ma R, Calabrese R, Kaplan DL, Tsukruk VV. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces. Biomacromolecules 2017; 18:2876-2886. [DOI: 10.1021/acs.biomac.7b00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sunghan Kim
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren D. Geryak
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Shuaidi Zhang
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ruilong Ma
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Rossella Calabrese
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Vladimir. V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
4
|
Li Z, Luo J, Jiang Q, Zhao G, Liao Z, Liang X, Zeng R, Lv D. Roles of the Main Physical Properties of the Wet Granulation Product of Hawthorn leaf
Extract Mixtures in High Shear Granulation. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.13047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
- Women and Infants Hospital of Zhengzhou; Zhengzhou China
| | - Juan Luo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
| | - Qieying Jiang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
| | - Guowei Zhao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
| | - Zhenggen Liao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
| | - Xinli Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
| | - Ronggui Zeng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
| | - Dan Lv
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education; Jiangxi University of Traditional Chinese Medicine; Yun Wan Road No. 818 Nanchang 330004 China
| |
Collapse
|
5
|
Ulusoy M, Jonczyk R, Walter JG, Springer S, Lavrentieva A, Stahl F, Green M, Scheper T. Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity. Bioconjug Chem 2015; 27:414-26. [DOI: 10.1021/acs.bioconjchem.5b00491] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | - Mark Green
- Department
of Physics, King’s College London, The Strand, WC2R 2LS London, U.K
| | | |
Collapse
|
6
|
Pelaz B, del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, de la Fuente JM, Nienhaus GU, Parak WJ. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS NANO 2015; 9:6996-7008. [PMID: 26079146 DOI: 10.1021/acsnano.5b01326] [Citation(s) in RCA: 575] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Here we have investigated the effect of enshrouding polymer-coated nanoparticles (NPs) with polyethylene glycol (PEG) on the adsorption of proteins and uptake by cultured cells. PEG was covalently linked to the polymer surface to the maximal grafting density achievable under our experimental conditions. Changes in the effective hydrodynamic radius of the NPs upon adsorption of human serum albumin (HSA) and fibrinogen (FIB) were measured in situ using fluorescence correlation spectroscopy. For NPs without a PEG shell, a thickness increase of around 3 nm, corresponding to HSA monolayer adsorption, was measured at high HSA concentration. Only 50% of this value was found for NPs with PEGylated surfaces. While the size increase clearly reveals formation of a protein corona also for PEGylated NPs, fluorescence lifetime measurements and quenching experiments suggest that the adsorbed HSA molecules are buried within the PEG shell. For FIB adsorption onto PEGylated NPs, even less change in NP diameter was observed. In vitro uptake of the NPs by 3T3 fibroblasts was reduced to around 10% upon PEGylation with PEG chains of 10 kDa. Thus, even though the PEG coatings did not completely prevent protein adsorption, the PEGylated NPs still displayed a pronounced reduction of cellular uptake with respect to bare NPs, which is to be expected if the adsorbed proteins are not exposed on the NP surface.
Collapse
Affiliation(s)
- Beatriz Pelaz
- †Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany
| | | | - Pauline Maffre
- §Institute of Applied Physics and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Raimo Hartmann
- †Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany
| | | | | | - Jesus M de la Fuente
- ⊥Instituto de Ciencia de Materiales de Aragon, CSIC/University of Zaragoza, 50018 Zaragoza, Spain
| | - G Ulrich Nienhaus
- §Institute of Applied Physics and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- #Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wolfgang J Parak
- †Fachbereich Physik, Philipps Universität Marburg, 35037 Marburg, Germany
- ‡CIC biomaGUNE, 20009 San Sebastian, Spain
| |
Collapse
|
7
|
Blakeston AC, Alswieleh AM, Heath GR, Roth JS, Bao P, Cheng N, Armes SP, Leggett GJ, Bushby RJ, Evans SD. New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015. [PMID: 25746444 DOI: 10.1021/la504163s.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm(2) s(-1), which are comparable to those observed for lipid bilayers on glass substrates.
Collapse
Affiliation(s)
- Anita C Blakeston
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Abdullah M Alswieleh
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - George R Heath
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Johannes S Roth
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peng Bao
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nan Cheng
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Steven P Armes
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Graham J Leggett
- ‡Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Richard J Bushby
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- †Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Blakeston A, Alswieleh AM, Heath GR, Roth JS, Bao P, Cheng N, Armes SP, Leggett GJ, Bushby RJ, Evans SD. New poly(amino acid methacrylate) brush supports the formation of well-defined lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3668-77. [PMID: 25746444 PMCID: PMC4444997 DOI: 10.1021/la504163s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/29/2015] [Indexed: 05/19/2023]
Abstract
A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼-10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm(2) s(-1), which are comparable to those observed for lipid bilayers on glass substrates.
Collapse
Affiliation(s)
- Anita
C. Blakeston
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | | | - George R. Heath
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Johannes S. Roth
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Peng Bao
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Nan Cheng
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Richard J. Bushby
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Stephen D. Evans
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United
Kingdom
| |
Collapse
|
9
|
Mukhametshina AR, Mustafina AR, Davydov NA, Nizameev IR, Kadirov MK, Gorbatchuk VV, Konovalov AI. The energy transfer based fluorescent approach to detect the formation of silica supported phosphatidylcholine and phosphatidylserine containing bilayers. Colloids Surf B Biointerfaces 2014; 115:93-9. [DOI: 10.1016/j.colsurfb.2013.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 11/25/2022]
|