1
|
Botifoll M, Pinto-Huguet I, Arbiol J. Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. NANOSCALE HORIZONS 2022; 7:1427-1477. [PMID: 36239693 DOI: 10.1039/d2nh00377e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the last few years, electron microscopy has experienced a new methodological paradigm aimed to fix the bottlenecks and overcome the challenges of its analytical workflow. Machine learning and artificial intelligence are answering this call providing powerful resources towards automation, exploration, and development. In this review, we evaluate the state-of-the-art of machine learning applied to electron microscopy (and obliquely, to materials and nano-sciences). We start from the traditional imaging techniques to reach the newest higher-dimensionality ones, also covering the recent advances in spectroscopy and tomography. Additionally, the present review provides a practical guide for microscopists, and in general for material scientists, but not necessarily advanced machine learning practitioners, to straightforwardly apply the offered set of tools to their own research. To conclude, we explore the state-of-the-art of other disciplines with a broader experience in applying artificial intelligence methods to their research (e.g., high-energy physics, astronomy, Earth sciences, and even robotics, videogames, or marketing and finances), in order to narrow down the incoming future of electron microscopy, its challenges and outlook.
Collapse
Affiliation(s)
- Marc Botifoll
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Ivan Pinto-Huguet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain.
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Ribet SM, Murthy AA, Roth EW, Dos Reis R, Dravid VP. Making the Most of your Electrons: Challenges and Opportunities in Characterizing Hybrid Interfaces with STEM. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:100-115. [PMID: 35241968 PMCID: PMC8887695 DOI: 10.1016/j.mattod.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Inspired by the unique architectures composed of hard and soft materials in natural and biological systems, synthetic hybrid structures and associated soft-hard interfaces have recently evoked significant interest. Soft matter is typically dominated by fluctuations even at room temperature, while hard matter (which often serves as the substrate or anchor for the soft component) is governed by rigid mechanical behavior. This dichotomy offers considerable opportunities to leverage the disparate properties offered by these components across a wide spectrum spanning from basic science to engineering insights with significant technological overtones. Such hybrid structures, which include polymer nanocomposites, DNA functionalized nanoparticle superlattices and metal organic frameworks to name a few, have delivered promising insights into the areas of catalysis, environmental remediation, optoelectronics, medicine, and beyond. The interfacial structure between these hard and soft phases exists across a variety of length scales and often strongly influence the functionality of hybrid systems. While scanning/transmission electron microscopy (S/TEM) has proven to be a valuable tool for acquiring intricate molecular and nanoscale details of these interfaces, the unusual nature of hybrid composites presents a suite of challenges that make assessing or establishing the classical structure-property relationships especially difficult. These include challenges associated with preparing electron-transparent samples and obtaining sufficient contrast to resolve the interface between dissimilar materials given the dose sensitivity of soft materials. We discuss each of these challenges and supplement a review of recent developments in the field with additional experimental investigations and simulations to present solutions for attaining a nano or atomic-level understanding of these interfaces. These solutions present a host of opportunities for investigating and understanding the role interfaces play in this unique class of functional materials.
Collapse
Affiliation(s)
- Stephanie M Ribet
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
| | - Eric W Roth
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL
- International Institute of Nanotechnology, Northwestern University, Evanston, IL
- The NUANCE Center, Northwestern University, Evanston, IL
| |
Collapse
|
3
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Schwartz J, Jiang Y, Wang Y, Aiello A, Bhattacharya P, Yuan H, Mi Z, Bassim N, Hovden R. Removing Stripes, Scratches, and Curtaining with Nonrecoverable Compressed Sensing. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:705-710. [PMID: 30867078 DOI: 10.1017/s1431927619000254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Highly-directional image artifacts such as ion mill curtaining, mechanical scratches, or image striping from beam instability degrade the interpretability of micrographs. These unwanted, aperiodic features extend the image along a primary direction and occupy a small wedge of information in Fourier space. Deleting this wedge of data replaces stripes, scratches, or curtaining, with more complex streaking and blurring artifacts-known within the tomography community as "missing wedge" artifacts. Here, we overcome this problem by recovering the missing region using total variation minimization, which leverages image sparsity-based reconstruction techniques-colloquially referred to as compressed sensing (CS)-to reliably restore images corrupted by stripe-like features. Our approach removes beam instability, ion mill curtaining, mechanical scratches, or any stripe features and remains robust at low signal-to-noise. The success of this approach is achieved by exploiting CS's inability to recover directional structures that are highly localized and missing in Fourier Space.
Collapse
Affiliation(s)
- Jonathan Schwartz
- Department of Materials Science and Engineering,University of Michigan,Ann Arbor, MI,USA
| | - Yi Jiang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory,Argonne, IL,USA
| | - Yongjie Wang
- Department of Electrical Engineering and Computer Science,University of Michigan,Ann Arbor,USA
| | - Anthony Aiello
- Department of Electrical Engineering and Computer Science,University of Michigan,Ann Arbor,USA
| | - Pallab Bhattacharya
- Department of Electrical Engineering and Computer Science,University of Michigan,Ann Arbor,USA
| | - Hui Yuan
- Canadian Centre for Electron Microscopy, McMaster University,Hamilton, ON,Canada
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science,University of Michigan,Ann Arbor,USA
| | - Nabil Bassim
- Department of Materials Science and Engineering,McMaster University,Hamilton, ON,Canada
| | - Robert Hovden
- Department of Materials Science and Engineering,University of Michigan,Ann Arbor, MI,USA
| |
Collapse
|
5
|
Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. NANOSCALE 2018; 10:12871-12934. [PMID: 29926865 DOI: 10.1039/c8nr02278j] [Citation(s) in RCA: 633] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanostructures have attracted huge interest as a rapidly growing class of materials for many applications. Several techniques have been used to characterize the size, crystal structure, elemental composition and a variety of other physical properties of nanoparticles. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed. In addition, given that the significance of nanoparticles in basic research and applications is constantly increasing, it is necessary that researchers from separate fields overcome the challenges in the reproducible and reliable characterization of nanomaterials, after their synthesis and further process (e.g. annealing) stages. The principal objective of this review is to summarize the present knowledge on the use, advances, advantages and weaknesses of a large number of experimental techniques that are available for the characterization of nanoparticles. Different characterization techniques are classified according to the concept/group of the technique used, the information they can provide, or the materials that they are destined for. We describe the main characteristics of the techniques and their operation principles and we give various examples of their use, presenting them in a comparative mode, when possible, in relation to the property studied in each case.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
6
|
Wan X, Katchalski T, Churas C, Ghosh S, Phan S, Lawrence A, Hao Y, Zhou Z, Chen R, Chen Y, Zhang F, Ellisman MH. Electron tomography simulator with realistic 3D phantom for evaluation of acquisition, alignment and reconstruction methods. J Struct Biol 2017; 198:103-115. [PMID: 28392451 DOI: 10.1016/j.jsb.2017.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/22/2016] [Accepted: 04/03/2017] [Indexed: 11/16/2022]
Abstract
Because of the significance of electron microscope tomography in the investigation of biological structure at nanometer scales, ongoing improvement efforts have been continuous over recent years. This is particularly true in the case of software developments. Nevertheless, verification of improvements delivered by new algorithms and software remains difficult. Current analysis tools do not provide adaptable and consistent methods for quality assessment. This is particularly true with images of biological samples, due to image complexity, variability, low contrast and noise. We report an electron tomography (ET) simulator with accurate ray optics modeling of image formation that includes curvilinear trajectories through the sample, warping of the sample and noise. As a demonstration of the utility of our approach, we have concentrated on providing verification of the class of reconstruction methods applicable to wide field images of stained plastic-embedded samples. Accordingly, we have also constructed digital phantoms derived from serial block face scanning electron microscope images. These phantoms are also easily modified to include alignment features to test alignment algorithms. The combination of more realistic phantoms with more faithful simulations facilitates objective comparison of acquisition parameters, alignment and reconstruction algorithms and their range of applicability. With proper phantoms, this approach can also be modified to include more complex optical models, including distance-dependent blurring and phase contrast functions, such as may occur in cryotomography.
Collapse
Affiliation(s)
- Xiaohua Wan
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; National Center for Microscopy and Imaging Research, University of California, San Diego, USA
| | - Tsvi Katchalski
- National Center for Microscopy and Imaging Research, University of California, San Diego, USA
| | - Christopher Churas
- National Center for Microscopy and Imaging Research, University of California, San Diego, USA
| | - Sreya Ghosh
- National Center for Microscopy and Imaging Research, University of California, San Diego, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, University of California, San Diego, USA
| | - Albert Lawrence
- National Center for Microscopy and Imaging Research, University of California, San Diego, USA.
| | - Yu Hao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Ziying Zhou
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; Beijing Institute of Technology, Beijing, China
| | - Ruijuan Chen
- School of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin, China; National Center for Microscopy and Imaging Research, University of California, San Diego, USA
| | - Yu Chen
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Fa Zhang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, USA; Departments of Neurosciences and Bioengineering, University of California, San Diego, USA
| |
Collapse
|
7
|
Hayashida M, Malac M. Practical electron tomography guide: Recent progress and future opportunities. Micron 2016; 91:49-74. [PMID: 27728842 DOI: 10.1016/j.micron.2016.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
|
8
|
Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope. Sci Rep 2016; 6:33354. [PMID: 27646194 PMCID: PMC5028842 DOI: 10.1038/srep33354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
The three-dimensional tomographic reconstruction of a biological sample, namely collagen fibrils in human dermal tissue, was obtained from a set of projection-images acquired in the Scanning Electron Microscope. A tailored strategy for the transmission imaging mode was implemented in the microscope and proved effective in acquiring the projections needed for the tomographic reconstruction. Suitable projection alignment and Compressed Sensing formulation were used to overcome the limitations arising from the experimental acquisition strategy and to improve the reconstruction of the sample. The undetermined problem of structure reconstruction from a set of projections, limited in number and angular range, was indeed supported by exploiting the sparsity of the object projected in the electron microscopy images. In particular, the proposed system was able to preserve the reconstruction accuracy even in presence of a significant reduction of experimental projections.
Collapse
|
9
|
Torruella P, Arenal R, de la Peña F, Saghi Z, Yedra L, Eljarrat A, López-Conesa L, Estrader M, López-Ortega A, Salazar-Alvarez G, Nogués J, Ducati C, Midgley PA, Peiró F, Estradé S. 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography. NANO LETTERS 2016; 16:5068-73. [PMID: 27383904 DOI: 10.1021/acs.nanolett.6b01922] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.
Collapse
Affiliation(s)
- Pau Torruella
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Raúl Arenal
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza , 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
| | - Francisco de la Peña
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Zineb Saghi
- CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - Lluís Yedra
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Alberto Eljarrat
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Lluís López-Conesa
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Marta Estrader
- Laboratoire de Physique et Chimie des Nano-objects , 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Alberto López-Ortega
- INSTM and Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze , Via della Lastruccia 3, Sesto Fiorentino, I-50019 Firenze, Italy
| | - Germán Salazar-Alvarez
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden
| | - Josep Nogués
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats , Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
| | - Caterina Ducati
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Paul A Midgley
- Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom
| | - Francesca Peiró
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Sonia Estradé
- LENS-MIND-IN2UB, Departament d'Electrònica, Institut de Nanociència i Nanotecnologia, Universitat de Barcelona , Martí i Franquès 1, E-08028 Barcelona, Spain
| |
Collapse
|
10
|
Van Aert S, De Backer A, Martinez GT, den Dekker AJ, Van Dyck D, Bals S, Van Tendeloo G. Advanced electron crystallography through model-based imaging. IUCRJ 2016; 3:71-83. [PMID: 26870383 PMCID: PMC4704081 DOI: 10.1107/s2052252515019727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 05/30/2023]
Abstract
The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.
Collapse
Affiliation(s)
- Sandra Van Aert
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Annick De Backer
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gerardo T. Martinez
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Arnold J. den Dekker
- iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Delft Center for Systems and Control (DCSC), Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Dirk Van Dyck
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gustaaf Van Tendeloo
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
11
|
Su DS, Zhang B, Schlögl R. Electron microscopy of solid catalysts--transforming from a challenge to a toolbox. Chem Rev 2015; 115:2818-82. [PMID: 25826447 DOI: 10.1021/cr500084c] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dang Sheng Su
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bingsen Zhang
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Robert Schlögl
- ‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
12
|
Holland DJ, Gladden LF. Weniger ist mehr: Neue Messkonzepte in der Chemie durch Compressed Sensing. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Holland DJ, Gladden LF. Less is More: How Compressed Sensing is Transforming Metrology in Chemistry. Angew Chem Int Ed Engl 2014; 53:13330-40. [DOI: 10.1002/anie.201400535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/02/2014] [Indexed: 11/08/2022]
|
14
|
Leary R, Saghi Z, Midgley PA, Holland DJ. Compressed sensing electron tomography. Ultramicroscopy 2013; 131:70-91. [DOI: 10.1016/j.ultramic.2013.03.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 11/24/2022]
|
15
|
Zhang B, Su DS. Elektronentomographie: dreidimensionale Abbildung realer Kristallstrukturen mit atomarer Auflösung. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Zhang B, Su DS. Electron Tomography: Three-Dimensional Imaging of Real Crystal Structures at Atomic Resolution. Angew Chem Int Ed Engl 2013; 52:8504-6. [DOI: 10.1002/anie.201303804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 11/09/2022]
|
17
|
Thomas JM, Ducati C, Leary R, Midgley PA. Some Turning Points in the Chemical Electron Microscopic Study of Heterogeneous Catalysts. ChemCatChem 2013. [DOI: 10.1002/cctc.201200883] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|