1
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Ishihara K, Ito M, Fukazawa K, Inoue Y. Interface of Phospholipid Polymer Grafting Layers to Analyze Functions of Immobilized Oligopeptides Involved in Cell Adhesion. ACS Biomater Sci Eng 2020; 6:3984-3993. [PMID: 33463330 DOI: 10.1021/acsbiomaterials.0c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to design a material surface for use in the analysis of the behavior of biomolecules at the interface of direct cell contact. A superhydrophilic surface was prepared with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), which was grafted onto a substrate with controlled polymer chain density. An arginine-glycine-aspartic acid (RGD) peptide was immobilized at the surface of the polymer graft surface (PMPC-RGD surface). Initial adhesion of the cells to this substrate was observed. The PMPC-RGD surface could enable cell adhesion only through RGD peptide-integrin interactions. The density and movability of the RGD peptide at the terminal of the graft PMPC chain and the orientation of the RGD peptide affected the density of adherent cells. Thus, the PMPC graft surface may be a good candidate for a new platform with the ability to immobilize biomolecules to a defined position and enable accurate analysis of their effects on cells.
Collapse
|
3
|
Branched chain versus straight chain fluorinated surfactant: A comparative study of their anticorrosion performance on carbon steel. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Electrochemistry Study of Permselectivity and Interfacial Electron Transfers of a Branch-Tailed Fluorosurfactant Self-Assembled Monolayer on Gold. Molecules 2018; 23:molecules23112998. [PMID: 30453539 PMCID: PMC6278534 DOI: 10.3390/molecules23112998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
We investigated the permselectivity and interfacial electron transfers of an amphiphilic branch-tailed fluorosurfactant self-assembled monolayer (FS-SAM) on a gold electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FS-SAM was prepared by a self-assembly technique and a "click" reaction. The barrier property and interfacial electron transfers of the FS-SAM were also evaluated using various probes with different features. The FS-SAM allowed a higher degree of permeation by small hydrophilic (Cl- and F-) electrolyte ions than large hydrophobic (ClO₄- and PF₆-) ones. Meanwhile, the redox reaction of the Fe(CN)₆3- couple was nearly completely blocked by the FS-SAM, whereas the electron transfer of Ru(NH₃)₆3+ was easier than that of Fe(CN)₆3-, which may be due to the underlying tunneling mechanism. For hydrophobic dopamine, the hydrophobic bonding between the FS-SAM exterior fluoroalkyl moieties and the hydrophobic probes, as well as the hydration resistance from the interior hydration shell around the oligo (ethylene glycol) moieties, hindered the transport of hydrophobic probes into the FS-SAM. These results may have profound implications for understanding the permselectivity and electron transfers of amphiphilic surfaces consisting of molecules containing aromatic groups and branch-tailed fluorosurfactants in their structures.
Collapse
|
5
|
Rodríguez-Arco L, Poma A, Ruiz-Pérez L, Scarpa E, Ngamkham K, Battaglia G. Molecular bionics - engineering biomaterials at the molecular level using biological principles. Biomaterials 2018; 192:26-50. [PMID: 30419394 DOI: 10.1016/j.biomaterials.2018.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 12/18/2022]
Abstract
Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.
Collapse
Affiliation(s)
- Laura Rodríguez-Arco
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK.
| | - Alessandro Poma
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK
| | - Edoardo Scarpa
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK
| | - Kamolchanok Ngamkham
- Faculty of Engineering, King Mongkut's University of Technology Thonbury, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Giuseppe Battaglia
- Department of Chemistry, University College London (UCL) 20 Gordon St, Kings Cross, London, WC1H 0AJ, UK; Institute for Physics of Living Systems, University College London, London, UK; The EPRSC/Jeol Centre of Liquid Electron Microscopy, University College London, London, WC1H 0AJ, UK.
| |
Collapse
|
6
|
Wu HX, Zhang XH, Huang L, Ma LF, Liu CJ. Diblock Polymer Brush (PHEAA- b-PFMA): Microphase Separation Behavior and Anti-Protein Adsorption Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11101-11109. [PMID: 30148645 DOI: 10.1021/acs.langmuir.8b02584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a series of amphiphilic diblock polymers of poly(hydroxyethylacrylamide)- b-poly(1H,1H-pentafluoropropyl methacrylate) (PHEAA- b-PFMA) were grafted from silicon wafer via surface-initiated atom transfer radical polymerization (SI-ATRP). Surface wettability and chemical compositions of the modified surfaces were characterized by contact angle goniometer and X-ray photoelectron spectroscopy (XPS) respectively. Molecular weight and polydispersity of each block were measured using gel permeation chromatography (GPC). The topography and the microphase separation behavior of PHEAA- b-PFMA surfaces were investigated by atomic force microscope (AFM). The results show that only when the grafting density (σ) and thickness of PHEAA brush were in the range of 0.9-1.3 (chain/nm2) and 6.6-15.1 nm, respectively, and the ratio of PFMA/PHEAA varied from 89/42 to 89/94, could the diblock copolymer phase separate into nanostructures. Further, the antiprotein adsorption performance of the modified surfaces against BSA, fibrinogen, and lysozyme was studied. The results indicated the modified surfaces could reduce the protein adsorption compared to the pristine silicon wafer. For Fibrinogen, the antiadsorption effect of PHEAA- b-PFMA-modified surfaces with microphase segregation was better than that of corresponding PHEAA modified surfaces. The results provide further evidence that surface composition and microphase segregation of fluorinated moieties of block copolymer brushes significantly impact protein adsorption behaviors.
Collapse
Affiliation(s)
- Hai-Xia Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang Normal University , Luoyang 471022 , P. R. China
| | - Xiao-Hong Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
| | - Lin Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials , Luoyang Normal University , Luoyang 471022 , P. R. China
| | - Chuan-Jun Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
7
|
Blond P, Mattiuzzi A, Valkenier H, Troian-Gautier L, Bergamini JF, Doneux T, Goormaghtigh E, Raussens V, Jabin I. Grafting of Oligo(ethylene glycol)-Functionalized Calix[4]arene-Tetradiazonium Salts for Antifouling Germanium and Gold Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6021-6027. [PMID: 29724105 DOI: 10.1021/acs.langmuir.8b00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transform infrared (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive, but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. Here, we report robust monolayers of calix[4]arenes bearing oligo(ethylene glycol) (oEG) chains, which were grafted on germanium and gold surfaces via their tetradiazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR, and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy, and the nonspecific absorption of bovine serum albumin was found to be reduced by 85% compared to that of unmodified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way for the design of germanium- or gold-based biosensors.
Collapse
Affiliation(s)
- Pascale Blond
- Laboratoire de Chimie Organique , Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP160/06, B-1050 Brussels , Belgium
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics , Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP206/02, B-1050 Brussels , Belgium
| | - Alice Mattiuzzi
- Laboratoire de Chimie Organique , Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP160/06, B-1050 Brussels , Belgium
- X4C , Rue Chêne Bonnet 128 , 6110 Montigny-le-Tilleul , Belgium
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems , Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP165/64, B-1050 Brussels , Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique , Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP160/06, B-1050 Brussels , Belgium
| | - Jean-François Bergamini
- Institut des Sciences Chimiques de Rennes (Equipe MaCSE), CNRS, UMR 6226 , Université de Rennes 1 , Campus de Beaulieu, Bat 10C, 35042 Cedex Rennes , France
| | - Thomas Doneux
- Chimie Analytique et Chimie des Interfaces , Université Libre de Bruxelles (ULB) , Campus de la Plaine, boulevard du Triomphe , CP255, B-1050 Brussels , Belgium
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics , Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP206/02, B-1050 Brussels , Belgium
| | - Vincent Raussens
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics , Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP206/02, B-1050 Brussels , Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique , Université Libre de Bruxelles (ULB) , avenue F. D. Roosevelt 50 , CP160/06, B-1050 Brussels , Belgium
| |
Collapse
|
8
|
Qin G, Yam CM, Kumar A, Lopez-Romero JM, Li S, Huynh T, Li Y, Yang B, Contreras-Caceres R, Cai C. Preparation, characterization, and protein-resistance of films derived from a series of α-oligo(ethylene glycol)-ω-alkenes on H–Si(111) surfaces. RSC Adv 2017. [DOI: 10.1039/c6ra28497c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Films on Si(111) were prepared by photo-activated grafting of CH2CH(CH2)m(OCH2CH2)nOCH3 (m = 8, 9; n = 3–7) by using different vacuum conditions. High vacuum produced a higher thickness (40 Å) and <0.8% fibrinogen adsorption (C10EG7). Films were stable even after 28 days.
Collapse
Affiliation(s)
- Guoting Qin
- College of Optometry
- University of Houston
- Houston
- USA
| | - Chi Ming Yam
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Amit Kumar
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - J. Manuel Lopez-Romero
- Departamento de Química Orgánica
- Facultad de Ciencias
- Universidad de Málaga
- 29071 Málaga
- Spain
| | - Sha Li
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Toan Huynh
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Yan Li
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | - Bin Yang
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| | | | - Chengzhi Cai
- Department of Chemistry & Center for Materials Chemistry
- University of Houston
- Houston
- USA
| |
Collapse
|
9
|
Shakiba A, Zenasni O, D. Marquez M, Randall Lee T. Advanced drug delivery via self-assembled monolayer-coated nanoparticles. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.2.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
10
|
Zhang P, Chen YP, Wang W, Shen Y, Guo JS. Surface plasmon resonance for water pollutant detection and water process analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Safazadeh L, Zehuri VEF, Pautler SP, Hastings JT, Berron BJ. Relative Contribution of Lateral Packing Density to Albumin Adsorption on Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8034-8041. [PMID: 27463892 DOI: 10.1021/acs.langmuir.6b01885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effect of functional group density on protein adsorption is systematically studied to support ongoing efforts in molecular imprinting of surfaces and bulk materials. In these applications, functional commodity chemicals are molded to complement the shape and chemistry of the target molecule. Here, we study the relationship between bovine serum albumin adsorption and ligand density for carboxylate, alcohol, and alkyl terminal groups. Control surfaces consisting of densely packed self-assembled monolayers (SAMs) are contrasted with low-density SAMs formed through thiol-yne chemistry. Direct comparison consistently yielded greater protein adsorption on low-density SAMs than conventional pure component SAMs of the same functional group. Critically, the carboxylate and alcohol low-density SAMS are more hydrophobic than their analogous dense SAMs. Mixed functional group, dense SAMs were formed with alkyl diluents to match the hydrophobicity of the low-density SAMs. Once hydrophobicity is matched, the dense carboxylate and alcohol SAMs have higher adsorption than the low-density SAMs. We conclude (1) surface charge and hydrophobicity trends dominate over surface density contributions; (2) when hydrophobicity is matched, greater adsorption occurs on dense hydrophilic groups than on lower density hydrophilic groups; (3) when hydrophobicity is matched, greater adsorption occurs on lower density hydrophobic groups than on higher density hydrophobic groups.
Collapse
Affiliation(s)
| | | | - Samuel P Pautler
- Department of Bioengineering, University of Missouri , Columbia, Missouri 65211, United States
| | | | | |
Collapse
|
12
|
Zhong J, Ji H, Duan J, Tu H, Zhang A. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption. Colloids Surf B Biointerfaces 2016; 140:254-261. [DOI: 10.1016/j.colsurfb.2015.12.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/03/2015] [Accepted: 12/27/2015] [Indexed: 12/31/2022]
|
13
|
Contreras-Caceres R, Santos CM, Li S, Kumar A, Zhu Z, Kolar SS, Casado-Rodriguez MA, Huang Y, McDermott A, Lopez-Romero JM, Cai C. Modification of fluorous substrates with oligo(ethylene glycol) via "click" chemistry for long-term resistance of cell adhesion. J Colloid Interface Sci 2015. [PMID: 26210101 DOI: 10.1016/j.jcis.2015.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this work perfluorinated substrates fabricated from SiO2 glass slides are modified with oligo(ethylene glycol) (OEG) units for long-term resistance of cell adhesion purposes, based on fluorous interactions and click chemistry. Specifically, fluorous substrates, prepared by treatment of glass slides with 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane (FAS17), were coated with ethynyl-OEG-C8F17, followed by covalent attachment of an azido-OEG via copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. We demonstrate that the resultant surface avoid fibrinogen adsorption and resisted cell adhesion for over 14days. X-ray photoemission spectroscopy (XPS) analysis and contact angle goniometry measurements confirm the presence of the OEG molecules on the fluorous substrates. Bright field optical images show total absence of 3T3 fibroblast cells on the OEG modified fluorinated substrate for 1 and 5days, and a remarkably decrease of cell adhesion at 14days.
Collapse
Affiliation(s)
- Rafael Contreras-Caceres
- Department of Chemistry, University of Houston, Houston, TX 77204, USA; Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Spain.
| | | | - Siheng Li
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Amit Kumar
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Zhiling Zhu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Satya S Kolar
- College of Optometry, University of Houston, Houston, TX 77204, USA.
| | | | - Yongkai Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Alison McDermott
- College of Optometry, University of Houston, Houston, TX 77204, USA.
| | | | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
14
|
Muñiz Maisonet M, Elineni KK, Toomey RG, Gallant ND. Combining Nonadhesive Materials into Microstructured Composite Surfaces Induces Cell Adhesion and Spreading. ACS Biomater Sci Eng 2015; 1:1163-1173. [DOI: 10.1021/acsbiomaterials.5b00309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Maritza Muñiz Maisonet
- Department
of Chemical and Biomedical Engineering and ‡Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Kranthi Kumar Elineni
- Department
of Chemical and Biomedical Engineering and ‡Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Ryan G. Toomey
- Department
of Chemical and Biomedical Engineering and ‡Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Nathan D. Gallant
- Department
of Chemical and Biomedical Engineering and ‡Department of Mechanical Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
15
|
Chen X, Zhang G, Zhang Q, Zhan X, Chen F. Preparation and Performance of Amphiphilic Polyurethane Copolymers with Capsaicin-Mimic and PEG Moieties for Protein Resistance and Antibacteria. Ind Eng Chem Res 2015. [DOI: 10.1021/ie505062a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xi Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangfa Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengqiu Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Niu Y, Huang T, Zhou Z, Xu G, Zhang L, Wei T. Formation of cyclodextrin monolayer through a host–guest interaction with tailor-made phenyltriethoxysilane self-assembled monolayer. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.01.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Hydrophobic modification of polymethyl methacrylate as intraocular lenses material to improve the cytocompatibility. J Colloid Interface Sci 2014; 431:1-7. [DOI: 10.1016/j.jcis.2014.05.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022]
|