2
|
Sun Z, Xi L, Zheng K, Zhang Z, Baldridge KK, Olson MA. Classical and non-classical melatonin receptor agonist-directed micellization of bipyridinium-based supramolecular amphiphiles in water. SOFT MATTER 2020; 16:4788-4799. [PMID: 32400822 DOI: 10.1039/d0sm00424c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The addition of molecular recognition units into structures of amphiphiles is a means by which soft matter capable of undergoing template-directed micellization can be obtained. These supramolecular amphiphiles can bind with molecular templates using non-covalent bonding interactions, forming host-guest complexes that hold the amphiphiles together as they undergo micellization. In most cases, such templates are synthesized and designed for a specific molecular recognition motif. It is not clear, however, to what extent these types of amphiphile systems are responsive to members of a biologically derived class of molecular targets, for example, melatonin receptor agonists and their numerous isosteres. Herein, we describe the template-directed micellization and arrangement at the air-water interface of a bipyridinium-based gemini surfactant, driven by the influence of donor-acceptor CT interactions with a series of bioactive classical and non-classical melatonin isosteres. Under the conditions of templation by either 5-methoxytryptophol, N-acetylserotonin, N-acetyltryptamine, or the pharmaceutical agent agomelatine, favorable Gibbs free energies of micellization were observed with decreases in CMC by up to 70%, and concomitant increases of 28% in surface pressure, and decreases of 20% in contact angle versus untemplated solutions. Solid state thermochromic transition temperatures for inkjet-printed patterns of the templated amphiphile solutions were inversely correlated with trends observed for their respective CMCs, and exhibited no correlation to their binding constants. These findings contend for the generalizable use of melatonin receptor agonists as targets and/or templates for chemical systems, which rely on π-stacking donor-acceptor CT interactions in water to facilitate the actions of binding, sequestration, or template-directed self-assembly.
Collapse
Affiliation(s)
- Zhimin Sun
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Lihui Xi
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kai Zheng
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Zhao Zhang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Kim K Baldridge
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| | - Mark A Olson
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.
| |
Collapse
|
3
|
Zhil’tsova EP, Ibatullina MR, Lukashenko SS, Nizameev IR, Kadirov MK, Zakharova LY. Catalytic Systems Based on the Metal Complexes of 1-Alkyl-4-Aza-1-Azoniabicyclo[2.2.2]Octane Bromides. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420010140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Stoffelen C, Huskens J. Soft Supramolecular Nanoparticles by Noncovalent and Host-Guest Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:96-119. [PMID: 26584451 DOI: 10.1002/smll.201501348] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/26/2015] [Indexed: 06/05/2023]
Abstract
Supramolecular chemistry provides a tool for the formation of highly ordered structures by means of noncovalent interactions. Soft supramolecular nanoparticles are self-assembled nanoassemblies based on small building blocks and stabilized by basic noncovalent interactions, selective host-guest interactions, or a combination of different interaction types. This review provides an overview of the existing approaches for the formation of supramolecular nanoparticles by various types of noncovalent interactions, with a strong focus on host-guest-mediated assemblies. The approaches are ordered based on the nature of the stabilizing supramolecular interaction, while focusing on the aspects that determine the particle structure. Where applicable, the use of these self-assembled nanostructures as vectors in molecular diagnostics and therapeutics is described as well. The stable yet reversible nature of supramolecular interactions and their chemical flexibility offer great prospects for the development of highly engineered nanoparticles which are compatible with the complexity of living systems.
Collapse
Affiliation(s)
- Carmen Stoffelen
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. BOX 217, 7500, AE, Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. BOX 217, 7500, AE, Enschede, The Netherlands
| |
Collapse
|
5
|
Abstract
Switchable foam control was achieved for aqueous solution of new surface-active ionic liquid ([BAzoTMA][NTf2]) by alternatively adding cucurbit[7]uril and spermine.
Collapse
Affiliation(s)
- Shaoxiong Shi
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Tianxiang Yin
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weiguo Shen
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Department of Chemistry
| |
Collapse
|
6
|
Wei SC, Pan M, Fan YZ, Liu H, Zhang J, Su CY. Creating Coordination-Based Cavities in a Multiresponsive Supramolecular Gel. Chemistry 2015; 21:7418-27. [DOI: 10.1002/chem.201406517] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 12/21/2022]
|