1
|
New Green Approaches in Nanoparticles Synthesis: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196472. [PMID: 36235008 PMCID: PMC9573382 DOI: 10.3390/molecules27196472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Nanotechnology is constantly expanding, with nanomaterials being more and more used in common commercial products that define our modern life. Among all types of nanomaterials, nanoparticles (NPs) occupy an important place, considering the great amount that is produced nowadays and the diversity of their applications. Conventional techniques applied to synthesize NPs have some issues that impede them from being appreciated as safe for the environment and health. The alternative to these might be the use of living organisms or biological extracts that can be involved in the green approach synthesis of NPs, a process that is free of harmful chemicals, cost-effective and a low energy consumer. Several factors, including biological reducing agent concentration, initial precursor salt concentration, agitation, reaction time, pH, temperature and light, can influence the characteristics of biologically synthesized NPs. The interdependence between these reaction parameters was not explored, being the main impediment in the implementation of the biological method on an industrial scale. Our aim is to present a brief review that focuses on the current knowledge regarding how the aforementioned factors can control the size and shape of green-synthesized NPs. We also provide an overview of the biomolecules that were found to be suitable for NP synthesis. This work is meant to be a support for researchers who intend to develop new green approaches for the synthesis of NPs.
Collapse
|
2
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Mahmood Ansari S, Saquib Q, De Matteis V, Awad Alwathnani H, Ali Alharbi S, Ali Al-Khedhairy A. Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications. Bioinorg Chem Appl 2021; 2021:5985377. [PMID: 34873399 PMCID: PMC8643268 DOI: 10.1155/2021/5985377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The application of hazardous chemicals during nanoparticle (NP) synthesis has raised alarming concerns pertaining to their biocompatibility and equally to the environmental harmlessness. In the recent decade, nanotechnological research has made a gigantic shift in order to include the natural resources to produce biogenic NPs. Within this approach, researchers have utilized marine resources such as macroalgae and microalgae, land plants, bacteria, fungi, yeast, actinomycetes, and viruses to synthesize NPs. Marine macroalgae (brown, red, and green) are rich in polysaccharides including alginates, fucose-containing sulfated polysaccharides (FCSPs), galactans, agars or carrageenans, semicrystalline cellulose, ulvans, and hemicelluloses. Phytochemicals are abundant in phenols, tannins, alkaloids, terpenoids, and vitamins. However, microorganisms have an abundance of active compounds ranging from sugar molecules, enzymes, canonical membrane proteins, reductase enzymes (NADH and NADPH), membrane proteins to many more. The prime reason for using the aforesaid entities in the metallic NPs synthesis is based on their intrinsic properties to act as bioreductants, having the capability to reduce and cap the metal ions into stabilized NPs. Several green NPs have been verified for their biocompatibility in human cells. Bioactive constituents from the above resources have been found on the green metallic NPs, which has demonstrated their efficacies as prospective antibiotics and anti-cancer agents against a range of human pathogens and cancer cells. Moreover, these NPs can be characterized for the size, shapes, functional groups, surface properties, porosity, hydrodynamic stability, and surface charge using different characterization techniques. The novelty and originality of this review is that we provide recent research compilations on green synthesis of NPs by marine macroalgae and other biological sources (plant, bacteria, fungi, actinomycetes, yeast, and virus). Besides, we elaborated on the detailed intra- and extracellular mechanisms of NPs synthesis by marine macroalgae. The application of green NPs as anti-bacterial, anti-cancer, and popular methods of NPs characterization techniques has also been critically reviewed.
Collapse
Affiliation(s)
- Sabiha Mahmood Ansari
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Hend Awad Alwathnani
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
4
|
Fabrication of iron nanoparticles using Leptolyngbya valderiana and investigation of its Cr (VI) removal potential in the free and biomass associated forms. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Jara N, Milán NS, Rahman A, Mouheb L, Boffito DC, Jeffryes C, Dahoumane SA. Photochemical Synthesis of Gold and Silver Nanoparticles-A Review. Molecules 2021; 26:4585. [PMID: 34361738 PMCID: PMC8348930 DOI: 10.3390/molecules26154585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents' nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.
Collapse
Affiliation(s)
- Nicole Jara
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
| | - Nataly S. Milán
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA; (A.R.); (C.J.)
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, Tizi-Ouzou 15000, Algeria;
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada;
| | - Clayton Jeffryes
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA; (A.R.); (C.J.)
- Center for Advances in Water and Air Quality, The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada;
| |
Collapse
|
6
|
Yao Y, Wang D, Hu J, Yang X. Tumor-targeting inorganic nanomaterials synthesized by living cells. NANOSCALE ADVANCES 2021; 3:2975-2994. [PMID: 36133644 PMCID: PMC9419506 DOI: 10.1039/d1na00155h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 05/09/2023]
Abstract
Inorganic nanomaterials (NMs) have shown potential application in tumor-targeting theranostics, owing to their unique physicochemical properties. Some living cells in nature can absorb surrounding ions in the environment and then convert them into nanomaterials after a series of intracellular/extracellular biochemical reactions. Inspired by that, a variety of living cells have been used as biofactories to produce metallic/metallic alloy NMs, metalloid NMs, oxide NMs and chalcogenide NMs, which are usually automatically capped with biomolecules originating from the living cells, benefitting their tumor-targeting applications. In this review, we summarize the biosynthesis of inorganic nanomaterials in different types of living cells including bacteria, fungi, plant cells and animal cells, accompanied by their application in tumor-targeting theranostics. The mechanisms involving inorganic-ion bioreduction and detoxification as well as biomineralization are emphasized. Based on the mechanisms, we describe the size and morphology control of the products via the modulation of precursor ion concentration, pH, temperature, and incubation time, as well as cell metabolism by a genetic engineering strategy. The strengths and weaknesses of these biosynthetic processes are compared in terms of the controllability, scalability and cooperativity during applications. Future research in this area will add to the diversity of available inorganic nanomaterials as well as their quality and biosafety.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
7
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
8
|
Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA. Green Synthesis of Selenium and Tellurium Nanoparticles: Current Trends, Biological Properties and Biomedical Applications. Int J Mol Sci 2021; 22:989. [PMID: 33498184 PMCID: PMC7863925 DOI: 10.3390/ijms22030989] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Francisco E. Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA;
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA;
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
| | - Clayton Jeffryes
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA;
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (M.C.Z.); (E.M.Q.); (F.E.J.); (N.S.V.)
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
9
|
Taghizadeh SM, Morowvat MH, Negahdaripour M, Ebrahiminezhad A, Ghasemi Y. Biosynthesis of Metals and Metal Oxide Nanoparticles Through Microalgal Nanobiotechnology: Quality Control Aspects. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00805-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S. An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications. Biomolecules 2020; 10:E1498. [PMID: 33143289 PMCID: PMC7693774 DOI: 10.3390/biom10111498] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
Algae have long been exploited commercially and industrially as food, feed, additives, cosmetics, pharmaceuticals, and fertilizer, but now the trend is shifting towards the algae-mediated green synthesis of nanoparticles (NPs). This trend is increasing day by day, as algae are a rich source of secondary metabolites, easy to cultivate, have fast growth, and are scalable. In recent era, green synthesis of NPs has gained widespread attention as a safe, simple, sustainable, cost-effective, and eco-friendly protocol. The secondary metabolites from algae reduce, cap, and stabilize the metal precursors to form metal, metal oxide, or bimetallic NPs. The NPs synthesis could either be intracellular or extracellular depending on the location of NPs synthesis and reducing agents. Among the diverse range of algae, the most widely investigated algae for the biosynthesis of NPs documented are brown, red, blue-green, micro and macro green algae. Due to the biocompatibility, safety and unique physico-chemical properties of NPs, the algal biosynthesized NPs have also been studied for their biomedical applications, which include anti-bacterial, anti-fungal, anti-cancerous, anti-fouling, bioremediation, and biosensing activities. In this review, the rationale behind the algal-mediated biosynthesis of metallic, metallic oxide, and bimetallic NPs from various algae have been reviewed. Furthermore, an insight into the mechanism of biosynthesis of NPs from algae and their biomedical applications has been reviewed critically.
Collapse
Affiliation(s)
- Rimsha Chaudhary
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (R.C.); (K.N.); (A.K.K.)
| | - Khadija Nawaz
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (R.C.); (K.N.); (A.K.K.)
| | - Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (R.C.); (K.N.); (A.K.K.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
- Le Studium—Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France;
| | - Bilal Haider Abbasi
- Le Studium—Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France;
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54000, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (R.C.); (K.N.); (A.K.K.)
| |
Collapse
|
11
|
Rahman A, Lin J, Jaramillo FE, Bazylinski DA, Jeffryes C, Dahoumane SA. In Vivo Biosynthesis of Inorganic Nanomaterials Using Eukaryotes-A Review. Molecules 2020; 25:E3246. [PMID: 32708767 PMCID: PMC7397067 DOI: 10.3390/molecules25143246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic cells and organisms-more specifically, live plants and living biomass of several species of microalgae, yeast, fungus, mammalian cells, and animals. It also highlights the strengths and weaknesses of the synthesis methodologies and the NP characteristics, bio-applications, and proposed synthesis mechanisms. This comprehensive review also brings attention to enabling a better understanding between the living organisms themselves and the synthesis conditions that allow their exploitation as nanobiotechnological production platforms as these might serve as a robust resource to boost and expand the bio-production and use of desirable, functional inorganic nanomaterials.
Collapse
Affiliation(s)
- Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA;
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Julia Lin
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Francisco E. Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador;
| | - Dennis A. Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA;
| | - Clayton Jeffryes
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador;
| |
Collapse
|
12
|
Rahman A, Kumar S, Bafana A, Lin J, Dahoumane SA, Jeffryes C. A Mechanistic View of the Light-Induced Synthesis of Silver Nanoparticles Using Extracellular Polymeric Substances of Chlamydomonas reinhardtii. Molecules 2019; 24:molecules24193506. [PMID: 31569641 PMCID: PMC6804166 DOI: 10.3390/molecules24193506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
In the current study, extracellular polymeric substances (EPS) of Chlamydomonas reinhardtii and photon energy biosynthetically converted Ag+ to silver nanoparticles (AgNPs). The reaction mechanism began with the non-photon-dependent adsorption of Ag+ to EPS biomolecules. An electron from the EPS biomolecules was then donated to reduce Ag+ to Ag0, while a simultaneous release of H+ acidified the reaction mixture. The acidification of the media and production rate of AgNPs increased with increasing light intensity, indicating the light-dependent nature of the AgNP synthesis process. In addition, the extent of Ag+ disappearance from the aqueous phase and the AgNP production rate were both dependent on the quantity of EPS in the reaction mixture, indicating Ag+ adsorption to EPS as an important step in AgNP production. Following the reaction, stabilization of the NPs took place as a function of EPS concentration. The shifts in the intensities and positions of the functional groups, detected by Fourier-transform infrared spectroscopy (FTIR), indicated the potential functional groups in the EPS that reduced Ag+, capped Ag0, and produced stable AgNPs. Based on these findings, a hypothetic three-step, EPS-mediated biosynthesis mechanism, which includes a light-independent adsorption of Ag+, a light-dependent reduction of Ag+ to Ag0, and an EPS concentration-dependent stabilization of Ag0 to AgNPs, has been proposed.
Collapse
Affiliation(s)
- Ashiqur Rahman
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
| | - Shishir Kumar
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
| | - Adarsh Bafana
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
| | - Julia Lin
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador.
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
- Center for Advances in Water & Air Quality, Lamar University, 211 Redbird Ln, Box 10888, Beaumont, TX 77710-0088, USA.
| |
Collapse
|
13
|
Khanna P, Kaur A, Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 2019; 163:105656. [PMID: 31220512 DOI: 10.1016/j.mimet.2019.105656] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Nanomaterials (NMs) tailored via conventional physicochemical routes play havoc with the environment that has led to the evolution of competent green routes for the actualization of a circular economy on an industrial-scale. Algae belonging to the class Cyanophyceae, Chlorophyceae, Phaeophyceae and Rhodophyceae have been harnessed as nano-machineries through intracellular and extracellular synthesis of gold (Au), silver (Ag) and several other metallic nanoparticles. Algae are an appealing platform for the production of diverse NMs, primarily due to the presence of bioactive compounds such as pigments and antioxidants in their cell extracts that act as biocompatible reductants. Chlorella spp. and Sargassum spp. have been extensively explored for the synthesis of nanoparticles having antimicrobial properties, which can potentially substitute conventional antibiotics. Characterization of nanoparticles (NPs) synthesised from algae has been done using advanced spectroscopic, diffractographic and microscopic techniques such as UV-Vis FT-IR, DLS, XPS, XRD, SEM, TEM, AFM, HR-TEM, and EDAX. The present paper reviews the information available on algae-mediated biosynthesis of various NPs, their characterization and applications in different domains.
Collapse
Affiliation(s)
- Prerna Khanna
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India
| | - Amrit Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India
| | - Dinesh Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Deemed University, Patiala 147 004, Punjab, India.
| |
Collapse
|
14
|
Rahman A, Kumar S, Bafana A, Dahoumane SA, Jeffryes C. Individual and Combined Effects of Extracellular Polymeric Substances and Whole Cell Components of Chlamydomonas reinhardtii on Silver Nanoparticle Synthesis and Stability. Molecules 2019; 24:molecules24050956. [PMID: 30857177 PMCID: PMC6429613 DOI: 10.3390/molecules24050956] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
The fresh water microalga Chlamydomonas reinhardtii bioreduced Ag⁺ to silver nanoparticles (AgNPs) via three biosynthetic routes in a process that could be a more sustainable alternative to conventionally produced AgNPs. The AgNPs were synthesized in either the presence of whole cell cultures, an exopolysaccharide (EPS)-containing cell culture supernatant, or living cells that had been separated from the EPS-containing supernatant and then washed before being suspended again in fresh media. While AgNPs were produced by all three methods, the washed cultures had no supernatant-derived EPS and produced only unstable AgNPs, thus the supernatant-EPS was shown to be necessary to cap and stabilize the biogenic AgNPs. TEM images showed stable AgNPs were mostly spherical and showed a bimodal size distribution about the size ranges of 3.0 ± 1.3 nm and 19.2 ± 5.0 nm for whole cultures and 3.5 ± 0.6 nm and 17.4 ± 2.6 nm for EPS only. Moreover, selected area electron diffraction pattern of these AgNPs confirmed their polycrystalline nature. FTIR of the as-produced AgNPs identified polysaccharides, polyphenols and proteins were responsible for the observed differences in the AgNP stability, size and shape. Additionally, Raman spectroscopy indicated carboxylate and amine groups were bound to the AgNP surface.
Collapse
Affiliation(s)
- Ashiqur Rahman
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
| | - Shishir Kumar
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
| | - Adarsh Bafana
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador.
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA.
- Center for Advances in Water & Air Quality, Lamar University, 211 Redbird Ln, Box 10888, Beaumont, TX 77710-0088, USA.
| |
Collapse
|
15
|
Advances in Synthesis and Applications of Microalgal Nanoparticles for Wastewater Treatment. JOURNAL OF NANOTECHNOLOGY 2019. [DOI: 10.1155/2019/7392713] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.
Collapse
|
16
|
Biosynthetic Conversion of Ag⁺ to highly Stable Ag⁰ Nanoparticles by Wild Type and Cell Wall Deficient Strains of Chlamydomonas reinhardtii. Molecules 2018; 24:molecules24010098. [PMID: 30597856 PMCID: PMC6337529 DOI: 10.3390/molecules24010098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/29/2023] Open
Abstract
In the current study, two different strains of the green, freshwater microalga Chlamydomonas reinhardtii bioreduced Ag+ to silver nanoparticles (AgNPs), which have applications in biosensors, biomaterials, and therapeutic and diagnostic tools. The bioreduction takes place in cell cultures of C. reinhardtii at ambient temperature and atmospheric pressure, thus eliminating the need for specialized equipment, harmful reducing agents or the generation of toxic byproducts. In addition to the visual changes in the cell culture, the production of AgNPs was confirmed by the characteristic surface plasmon resonance (SPR) band in the range of 415–425 nm using UV-Vis spectrophotometry and further evolution of the SPR peaks were studied by comparing the peak intensity at maximum absorbance over time. X-ray diffraction (XRD) determined that the NPs were Ag0. Micrographs from transmission electron microscopy (TEM) revealed that 97 ± 2% AgNPs were <10 nm in diameter. Ag+ to AgNP conversion was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The AgNPs were stable over time in the cell culture media, acetone, NaCl and reagent alcohol solutions. This was verified by a negligible change in the features of the SPR band after t > 300 days of storage at 4 °C.
Collapse
|
17
|
Lenartowicz M, Marek PH, Madura ID, Lipok J. Formation of Variously Shaped Gold Nanoparticles by Anabaena laxa. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1275-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Dahoumane SA, Jeffryes C, Mechouet M, Agathos SN. Biosynthesis of Inorganic Nanoparticles: A Fresh Look at the Control of Shape, Size and Composition. Bioengineering (Basel) 2017; 4:E14. [PMID: 28952493 PMCID: PMC5590428 DOI: 10.3390/bioengineering4010014] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/31/2023] Open
Abstract
Several methodologies have been devised for the design of nanomaterials. The "Holy Grail" for materials scientists is the cost-effective, eco-friendly synthesis of nanomaterials with controlled sizes, shapes and compositions, as these features confer to the as-produced nanocrystals unique properties making them appropriate candidates for valuable bio-applications. The present review summarizes published data regarding the production of nanomaterials with special features via sustainable methodologies based on the utilization of natural bioresources. The richness of the latter, the diversity of the routes adopted and the tuned experimental parameters have led to the fabrication of nanomaterials belonging to different chemical families with appropriate compositions and displaying interesting sizes and shapes. It is expected that these outstanding findings will encourage researchers and attract newcomers to continue and extend the exploration of possibilities offered by nature and the design of innovative and safer methodologies towards the synthesis of unique nanomaterials, possessing desired features and exhibiting valuable properties that can be exploited in a profusion of fields.
Collapse
Affiliation(s)
- Si Amar Dahoumane
- School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador.
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing (NAB) Laboratory, Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10053, Beaumont, TX 77710, USA.
| | - Mourad Mechouet
- Laboratoire de Physique et Chimie des Matériaux, Université Mouloud Mammeri, Route de Hasnaoua, BP 17 RP, Tizi-Ouzou 15000, Algérie.
| | - Spiros N Agathos
- School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador.
- Laboratory of Bioengineering, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, Bte L7.05.19, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
19
|
Ballottin D, Fulaz S, Souza ML, Corio P, Rodrigues AG, Souza AO, Gaspari PM, Gomes AF, Gozzo F, Tasic L. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:313. [PMID: 27356560 PMCID: PMC4927534 DOI: 10.1186/s11671-016-1538-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/24/2016] [Indexed: 05/18/2023]
Abstract
Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis-isolated as an endophytic fungus from Rizophora mangle-were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon their physical interaction with the AgNPs or when covalently bonded to them. Eight proteins in the AgNP dispersion were identified by mass spectrometry analyses. All these proteins are involved in metabolic pathways of the fungus and are important for carbon, phosphorous and nitrogen uptake, and for the fungal growth. Thereby, important proteins for fungi are also involved in the formation and stabilization of the biogenic AgNPs.
Collapse
Affiliation(s)
- Daniela Ballottin
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
- NanoBioss, SisNano, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stephanie Fulaz
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Michele L Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Ciências Exatas, Universidade Federal Fluminense, Volta Redonda, RJ, Brazil
| | - Paola Corio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Ana O Souza
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
| | - Priscyla M Gaspari
- Laboratório de Nanobiotecnologia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Riberão Preto, SP, Brazil
| | - Alexandre F Gomes
- Laboratório Dalton, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Gozzo
- Laboratório Dalton, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil.
- NanoBioss, SisNano, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| |
Collapse
|
20
|
Dahoumane SA, Wujcik EK, Jeffryes C. Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzyme Microb Technol 2016; 95:13-27. [PMID: 27866608 DOI: 10.1016/j.enzmictec.2016.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/10/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022]
Abstract
Phototrophic cell or tissue cultures can produce nanostructured noble metals, oxides and chalcogenides at ambient temperatures and pressures in an aqueous environment and without the need for potentially toxic solvents or the generation of dangerous waste products. These "green" synthesized nanobiomaterials can be used to fabricate biosensors and bio-reporting tools, theranostic vehicles, medical imaging agents, as well as tissue engineering scaffolds and biomaterials. While successful at the lab and experimental scales, significant barriers still inhibit the development of higher capacity processes. While scalability issues in traditional algal bioprocess engineering are well known, such as the controlled delivery of photons and gas-exchange, the large-scale algal synthesis of nanomaterials introduces additional parameters to be understood, i.e., nanoparticle (NP) formation kinetics and mechanisms, biological transport of metal cations and the effect of environmental conditions on the final form of the NPs. Only after a clear understanding of the kinetics and mechanisms can the strain selection, photobioreactor type, medium pH and ionic strength, mean light intensity and other relevant parameters be specified for an optimal bioprocess. To this end, this mini-review will examine the current best practices and understanding of these phenomena to establish a path forward for this technology.
Collapse
Affiliation(s)
- Si Amar Dahoumane
- School of Life Science and Biotechnology, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Evan K Wujcik
- Materials Engineering and Nanosensor (MEAN) Laboratory, Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX, USA
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing (NAB) Laboratory, Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX, USA.
| |
Collapse
|
21
|
Moreno-Garrido I, Pérez S, Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. MARINE ENVIRONMENTAL RESEARCH 2015; 111:60-73. [PMID: 26002248 DOI: 10.1016/j.marenvres.2015.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field.
Collapse
Affiliation(s)
- Ignacio Moreno-Garrido
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Sara Pérez
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (ICMAN-CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
22
|
Xu Y, Chen L, Wang X, Yao W, Zhang Q. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. NANOSCALE 2015; 7:10559-10583. [PMID: 26036784 DOI: 10.1039/c5nr02216a] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Review article provides a report on progress in the synthesis, properties and catalytic applications of noble metal based composite nanomaterials. We begin with a brief discussion on the categories of various composite materials. We then present some important colloidal synthetic approaches to the composite nanostructures; here, major attention has been paid to bimetallic nanoparticles. We also introduce some important physiochemical properties that are beneficial from composite nanomaterials. Finally, we highlight the catalytic applications of such composite nanoparticles and conclude with remarks on prospective future directions.
Collapse
Affiliation(s)
- Yong Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | |
Collapse
|
23
|
Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol 2014; 33:23-31. [PMID: 25445544 DOI: 10.1016/j.copbio.2014.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
The use of algal cell cultures represents a sustainable and environmentally friendly platform for the biogenic production of nanobiomaterials and biocatalysts. For example, advances in the production of biogeneic nanomaterials from algal cell cultures, such as crystalline β-chitin nanofibrils and gold and silver nanoparticles, could enable the 'green' production of biomaterials such as tissue-engineering scaffolds or drug carriers, supercapacitors and optoelectric materials. The in vivo functionalization, as well as newly demonstrated methods of production and modification, of biogenic diatom biosilica have led to the development of organic-inorganic hybrid catalytic systems as well as new biomaterials for drug delivery, biosensors and heavy-metal adsorbents.
Collapse
|
24
|
Mittal AK, Kumar S, Banerjee UC. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 2014; 431:194-9. [DOI: 10.1016/j.jcis.2014.06.030] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 11/25/2022]
|