1
|
Kumar Y, Sinha ASK, Nigam KDP, Dwivedi D, Sangwai JS. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. NANOSCALE 2023; 15:6075-6104. [PMID: 36928281 DOI: 10.1039/d2nr07163k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.
Collapse
Affiliation(s)
- Yogendra Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - A S K Sinha
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - K D P Nigam
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
- School of Chemical Engineering, University of Adelaide, North Terrace Campus, Adelaide (SA) 5005, Australia
| | - Deepak Dwivedi
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - Jitendra S Sangwai
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
2
|
van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev 2023; 123:271-326. [PMID: 36563316 DOI: 10.1021/acs.chemrev.2c00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Collapse
Affiliation(s)
- Joel van Embden
- School of Science, RMIT University, MelbourneVictoria, 3001, Australia
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131Padova, Italy.,Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstrasse 20, 76131Karlsruhe, Germany
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | | |
Collapse
|
3
|
Landeros-Páramo L, Saavedra-Molina A, Gómez-Hurtado MA, Rosas G. The effect of AgNPS bio-functionalization on the cytotoxicity of the yeast Saccharomyces cerevisiae. 3 Biotech 2022; 12:196. [PMID: 35928500 PMCID: PMC9343563 DOI: 10.1007/s13205-022-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
This work used Sedum praealtum leaf extract to synthesize silver nanoparticles (AgNPs) in a single step. The cytotoxicity of AgNPs was studied with the yeast Saccharomyces cerevisiae W303-1. In addition, the antioxidant activity of the DPPH radical was studied both in the extract of S. praealtum and in the AgNPs. UV-Vis spectroscopy determined the presence of AgNPs by the location of the surface plasmon resonance (SPR) band at 434 nm. TEM and XRD analyzes show AgNPs with fcc structure and hemispherical morphology. Also, AgNPs range in size from 5 to 25 nm and have an average size of 14 nm. 1H NMR, FTIR, and UV-Vis spectroscopy techniques agreed that glycosidic compounds were the main phytochemical components responsible for the reduction and stabilization of AgNPs. In addition, AgNPs presented a maximum of 12% toxicity in yeast attributed to the generation of ROS. Consequently, there was low bioactivity because glycoside compounds cover the biosynthesized AgNPs from S. praealtum. These findings allow applications of AgNPs involving contact with mammals and higher organisms.
Collapse
Affiliation(s)
- L. Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - A. Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - G. Rosas
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| |
Collapse
|
4
|
Yang F. Diffusion-Limited Growth of a Spherical Nanocrystal in a Finite Space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3912-3921. [PMID: 33751884 DOI: 10.1021/acs.langmuir.1c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reason for the work: The potential applications of nanoscale materials in nanophotonics, nanoelectronics, bioimaging, and biosensing have stimulated the research in the synthesis of nanocrystals, nanowires, and so forth. There is a great need to understand the spatiotemporal evolution of nanocrystals in the solution-route synthesis in order to better design advanced synthesis techniques for the manufacturing of monodisperse nanocrystals of high quality. Most significant results: We analyze the size effect on the diffusion-limited growth of a spherical nanoparticle in a finite space (spherical cavity) on the basis of the Gibbs-Thomson relation and obtain an analytical formulation of the monomer concentration in the finite space in an implicit form and an integro-differential equation for the growth rate of the spherical nanoparticle. The monomer concentration in the finite space decreases slower than that with a stationary nanoparticle. The growth of the spherical nanoparticle consists of two stages-an initially linear growth stage and a later power-law stage. The result from the infinite space with a stationary nanoparticle is inapplicable to the analysis of the growth of spherical nanoparticles in a finite space. Conclusions: There exists a size effect on the growth of nanocrystals in a finite space. The dependence of the growth behavior of nanocrystals on the growth time and temperature needs to be investigated in order to experimentally determine the fundamental mechanisms controlling the growth of nanocrystals in the solution-route synthesis.
Collapse
Affiliation(s)
- Fuqian Yang
- Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington 40506, Kentucky, United States
| |
Collapse
|
5
|
Tyl G, Bałdyga J, Bouaifi M, Jasińska M. Population balance approach to model Ostwald ripening of silica using Gram – Charlier series expansion based closure. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
|
7
|
Yusoff AHM, Salimi MN, Jamlos MF. Critical Parametric Study on Final Size of Magnetite Nanoparticles. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/318/1/012020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Soltis JA, Isley WC, Conroy M, Kathmann SM, Buck EC, Lumetta GJ. In situ microscopy across scales for the characterization of crystal growth mechanisms: the case of europium oxalate. CrystEngComm 2018. [DOI: 10.1039/c7ce01450c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of targeted syntheses requires a better understanding of how production pathways affect the final product, but many ex situ techniques used for studying nanoparticle growth are unsuitable as standalone methods for identifying and characterizing growth mechanisms.
Collapse
|
9
|
Wen T, Li Y, Zhang D, Zhan Q, Wen Q, Liao Y, Xie Y, Zhang H, Liu C, Jin L, Liu Y, Zhou T, Zhong Z. Manipulate the magnetic anisotropy of nanoparticle assemblies in arrays. J Colloid Interface Sci 2017; 497:14-22. [DOI: 10.1016/j.jcis.2017.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/18/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
10
|
Iwamatsu M. Nucleation and growth of a core-shell composite nucleus by diffusion. Phys Rev E 2017; 95:042803. [PMID: 28505766 DOI: 10.1103/physreve.95.042803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Indexed: 06/07/2023]
Abstract
The critical radius of a core-shell-type nucleus grown by diffusion in a phase-separated solution is studied. A kinetic critical radius rather than the thermodynamic critical radius of standard classical nucleation theory can be defined from the diffusional growth equations. It is shown that there exist two kinetic critical radii for the core-shell-type nucleus, for which both the inner-core radius and the outer-shell radius will be stationary. Therefore, these two critical radii correspond to a single critical point of the nucleation path with a single energy barrier even though the nucleation looks like a two-step process. The two radii are given by formulas similar to that of classical nucleation theory if the Ostwald-Freundlich boundary condition is imposed at the surface of the inner nucleus and that of the outer shell. The subsequent growth of a core-shell-type postcritical nucleus follows the classical picture of Ostwald's step rule. Our result is consistent with some of the experimental and numerical results which suggest the core-shell-type critical nucleus.
Collapse
Affiliation(s)
- Masao Iwamatsu
- Department of Physics, Faculty of Liberal Arts and Sciences, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan
| |
Collapse
|
11
|
Magudapathy P, Srivastava S, Gangopadhyay P, Amirthapandian S, Saravanan K, Das A, Panigrahi B. Alloying of metal nanoparticles by ion-beam induced sputtering. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Kokhanenko P, Brown K, Jermy M. Silica aquasols of incipient instability: Synthesis, growth kinetics and long term stability. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Bao Y, Wen T, Samia ACS, Khandhar A, Krishnan KM. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine. JOURNAL OF MATERIALS SCIENCE 2016; 51:513-553. [PMID: 26586919 PMCID: PMC4646229 DOI: 10.1007/s10853-015-9324-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/31/2015] [Indexed: 05/05/2023]
Abstract
We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.
Collapse
Affiliation(s)
- Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - Tianlong Wen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | | | - Kannan M. Krishnan
- Materials Science and Engineering, University of Washington, Seattle, 98195
| |
Collapse
|
14
|
Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. NANOSCALE 2015; 7:11142-54. [PMID: 26059262 PMCID: PMC5198837 DOI: 10.1039/c5nr01651g] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular application.
Collapse
Affiliation(s)
- Ryan Hufschmid
- Department of Materials Science & Engineering, University of Washington, Box 352120, Seattle, Washington 98195-2120, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wen T, Zhang D, Wen Q, Zhang H, Liao Y, Li Q, Yang Q, Bai F, Zhong Z. Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface. NANOSCALE 2015; 7:4906-4911. [PMID: 25712606 DOI: 10.1039/c4nr07489k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inverted pyramid hole arrays were fabricated by photolithography and used as templates to direct the growth of colloidal nanoparticle assemblies. Cobalt ferrite nanoparticles deposit in the holes to yield high quality pyramid magnetic nanoparticle assembly arrays by carefully controlling the evaporation of the carrier fluid. Magnetic measurements indicate that the pyramid magnetic nanoparticle assembly arrays preferentially magnetize perpendicular to the substrate.
Collapse
Affiliation(s)
- Tianlong Wen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Krishnan A, Sreeremya TS, Ghosh S. Morphological evolution and growth of cerium oxide nanostructures by virtue of organic ligands as well as monomer concentration. CrystEngComm 2015. [DOI: 10.1039/c5ce00965k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Sevonkaev IV, Herein D, Jeske G, Goia DV. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors. NANOSCALE 2014; 6:9614-9617. [PMID: 25030001 DOI: 10.1039/c4nr03045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.
Collapse
Affiliation(s)
- Igor V Sevonkaev
- Center for Advanced Materials Processing, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | |
Collapse
|