1
|
Li S, van der Ven LGJ, Garcia SJ, Esteves ACC. Healable Supracolloidal Nanocomposite Water-Borne Coatings. ACS APPLIED POLYMER MATERIALS 2024; 6:8830-8841. [PMID: 39144275 PMCID: PMC11320382 DOI: 10.1021/acsapm.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Water-borne coatings often contain nanofillers to enhance their mechanical or optical properties. The aggregation of these fillers may, however, lead to undesired effects such as brittle and opaque coatings, reducing their performance and lifetime. By controlling the distribution and structural arrangement of the nanofillers in the coatings and inserting reversible chemical bonds, both the elasticity and strength of the coatings may be effectively improved, while healing properties, via the reversible chemistry, extend the coating's lifetime. Aqueous dispersions of polymer-core/silica-corona supracolloidal particles were used to prepare water-borne coatings. Polymer and silica nanoparticles were prefunctionalized with thiol/disulfide groups during the supracolloid assembly. Disulfide bridges were further established between a cross-linker and the supracolloids during drying and coating formation. The supracolloidal nanocomposite coatings were submitted to intentional (physical) damages, i.e., blunt and sharp surface scratches or cut through into two pieces, and subsequently UV irradiated to induce the recovery of the damage(s). The viscoelasticity and healing properties of the coatings were examined by dynamic, static, and surface mechanical analyses. The nanocomposite coatings showed a great extent of interfacial restoration of cut damage and surface scratches. The healing properties are strongly related to the coating's viscoelasticity and interfacial (re)activation of the disulfide bridges. Nanocomposite coatings with silica concentrations below their critical volume fraction show higher in situ healing efficiency, as compared to coatings with higher silica concentration. This work provides insights into the control of nanofillers distribution in water-borne coatings and strategies to increase the coating lifetime via mechanical damage recovery.
Collapse
Affiliation(s)
- Siyu Li
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Leendert G. J. van der Ven
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Santiago J. Garcia
- Aerospace
Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg1, Delft 2629 HS, The Netherlands
| | - A. Catarina C. Esteves
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Wen SP, Trinh E, Yue Q, Fielding LA. Physical Adsorption of Graphene Oxide onto Polymer Latexes and Characterization of the Resulting Nanocomposite Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8187-8199. [PMID: 35771239 PMCID: PMC9281389 DOI: 10.1021/acs.langmuir.2c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer/graphene oxide (GO) nanocomposite particles were prepared via heteroflocculation between 140-220 nm cationic latex nanoparticles and anionic GO nanosheets in either acidic or basic conditions. It is demonstrated that nanocomposite particles can be formed using either poly(2-vinylpyridine)-b-poly(benzyl methacrylate) (P2VP-PBzMA) block copolymer nanoparticles prepared by reversible-addition chain-transfer (RAFT)-mediated polymerization-induced self-assembly (PISA), or poly(ethylene glycol)methacrylate (PEGMA)-stabilized P2VP latexes prepared by traditional emulsion polymerization. These two latexes are different morphologically as the P2VP-PBzMA block copolymer latexes have P2VP steric stabilizer chains in their corona, whereas the PEGMA-stabilized P2VP particles have a P2VP core and a nonionic steric stabilizer. Nevertheless, both the P2VP-PBzMA and PEGMA-stabilized P2VP latexes are cationic at low pH. Thus, the addition of GO to these latexes causes flocculation to occur immediately due to the opposite charges between the anionic GO nanosheets and cationic latexes. Control heteroflocculation experiments were conducted using anionic sterically stabilized poly(potassium 3-sulfopropyl methacrylate)-b-poly(benzyl methacrylate) (PKSPMA-PBzMA) and nonionic poly(benzyl methacrylate) (PBzMA) nanoparticles to demonstrate that polymer/GO nanocomposite particles were not formed. The degree of flocculation and the strength of electrostatic interaction between the cationic polymer latexes and GO were assessed using disc centrifuge photosedimentometry (DCP), transmission electron microscopy (TEM), and UV-visible spectrophotometry. These studies suggest that the optimal conditions for the formation of polymer/GO nanocomposite particles were GO contents between 10% and 20% w/w relative to latex, with the latexes containing P2VP in their corona having a stronger electrostatic attraction to the GO sheets.
Collapse
Affiliation(s)
- Shang-Pin Wen
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Elisabeth Trinh
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Qi Yue
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Wen SP, Fielding LA. Pyridine-functional diblock copolymer nanoparticles synthesized via RAFT-mediated polymerization-induced self-assembly: effect of solution pH. SOFT MATTER 2022; 18:1385-1394. [PMID: 35084008 DOI: 10.1039/d1sm01793d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymerization-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) polymerization has become widely recognized as a versatile and efficient strategy to prepare complex block copolymer nanoparticles with controlled morphology, size, and surface functionality. In this article, we report the preparation of cationic sterically-stabilized poly(2-vinylpyridine)-poly(benzyl methacrylate) (P2VP-PBzMA) diblock copolymer nanoparticles via RAFT-mediated PISA under aqueous emulsion polymerization conditions. It is demonstrated that the solution pH during PISA has a dramatic effect on the resulting P2VP-PBzMA nanoparticles, as judged by dynamic light scattering (DLS), disc centrifuge photosedimentometry (DCP) and transmission electron microscopy (TEM). Varying the solution pH results in the P2VP stabilizer having different solubilities due to protonation/deprotonation of the pyridine groups. This allows P2VP-PBzMA nanoparticles with tunable diameters to be prepared by altering the DP of the stabilizer (P2VP) and/or core-forming block (PBzMA), or simply by changing the solution pH for a fixed copolymer composition. For example, P2VP-PBzMA nanoparticles with larger diameters can be obtained at higher solution pH as the protonation degree of the P2VP stabilizer has a large effect on both the aggregation of polymer chains during the PISA process, and the resulting behavior of the diblock copolymer nanoparticles. Changing the dispersion pH post-polymerization has a relatively limited effect on particle diameter. Furthermore, aqueous electrophoresis studies indicate that these P2VP-PBzMA nanoparticles had good colloidal stability and high cationic charge (>30 mV) below pH 5 and can be dispersed readily over a wide pH range.
Collapse
Affiliation(s)
- Shang-Pin Wen
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
4
|
Zou H, Wang X. Adsorption of Silica Nanoparticles onto Poly(N-vinylpyrrolidone)-Functionalized Polystyrene Latex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1471-1477. [PMID: 28112949 DOI: 10.1021/acs.langmuir.6b03977] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a more general method to prepare silica-coated polystyrene (PS) particles with minimal excess silica by adsorption, highlighting the role of poly(N-vinylpyrrolidone) (PVP). The method is based on the addition of small silica nanoparticles onto submicrometer-sized near-monodisperse polymer latex particles under the conditions of monolayer silica coverage of the latex surface. Either a cationic or an anionic initiator could be used in the PVP-involved emulsion polymerization to prepare PS particles, and the adsorption was conducted successfully either under acidic or basic conditions. Neither a cationic initiator nor a basic condition is a prerequisite for the adsorption process, which should be related to the much stronger interaction between PVP and the silica surface. This method is expected to substantially extend the adsorption conditions of polymer-silica colloidal nanocomposite syntheses.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093, China
| | - Xia Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology , 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
5
|
Akpinar B, Fielding LA, Cunningham VJ, Ning Y, Mykhaylyk OO, Fowler PW, Armes SP. Determining the Effective Density and Stabilizer Layer Thickness of Sterically Stabilized Nanoparticles. Macromolecules 2016; 49:5160-5171. [PMID: 27478250 PMCID: PMC4963924 DOI: 10.1021/acs.macromol.6b00987] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/27/2016] [Indexed: 01/27/2023]
Abstract
A series of model sterically stabilized diblock copolymer nanoparticles has been designed to aid the development of analytical protocols in order to determine two key parameters: the effective particle density and the steric stabilizer layer thickness. The former parameter is essential for high resolution particle size analysis based on analytical (ultra)centrifugation techniques (e.g., disk centrifuge photosedimentometry, DCP), whereas the latter parameter is of fundamental importance in determining the effectiveness of steric stabilization as a colloid stability mechanism. The diblock copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using RAFT aqueous emulsion polymerization: this approach affords relatively narrow particle size distributions and enables the mean particle diameter and the stabilizer layer thickness to be adjusted independently via systematic variation of the mean degree of polymerization of the hydrophobic and hydrophilic blocks, respectively. The hydrophobic core-forming block was poly(2,2,2-trifluoroethyl methacrylate) [PTFEMA], which was selected for its relatively high density. The hydrophilic stabilizer block was poly(glycerol monomethacrylate) [PGMA], which is a well-known non-ionic polymer that remains water-soluble over a wide range of temperatures. Four series of PGMA x -PTFEMA y nanoparticles were prepared (x = 28, 43, 63, and 98, y = 100-1400) and characterized via transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS). It was found that the degree of polymerization of both the PGMA stabilizer and core-forming PTFEMA had a strong influence on the mean particle diameter, which ranged from 20 to 250 nm. Furthermore, SAXS was used to determine radii of gyration of 1.46 to 2.69 nm for the solvated PGMA stabilizer blocks. Thus, the mean effective density of these sterically stabilized particles was calculated and determined to lie between 1.19 g cm-3 for the smaller particles and 1.41 g cm-3 for the larger particles; these values are significantly lower than the solid-state density of PTFEMA (1.47 g cm-3). Since analytical centrifugation requires the density difference between the particles and the aqueous phase, determining the effective particle density is clearly vital for obtaining reliable particle size distributions. Furthermore, selected DCP data were recalculated by taking into account the inherent density distribution superimposed on the particle size distribution. Consequently, the true particle size distributions were found to be somewhat narrower than those calculated using an erroneous single density value, with smaller particles being particularly sensitive to this artifact.
Collapse
Affiliation(s)
- Bernice Akpinar
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Lee A. Fielding
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
- School
of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Victoria J. Cunningham
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Yin Ning
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Oleksandr O. Mykhaylyk
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Patrick W. Fowler
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|