Zhou Y, Qi M, Yang M. Fluorescence determination of lactate dehydrogenase activity based on silicon quantum dots.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022;
268:120697. [PMID:
34915230 DOI:
10.1016/j.saa.2021.120697]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Silicon quantum dots (SiQDs) synthesized based on 3-aminopropyltrimethoxysilane (ATPMS) as silicon source were used to detect the activity of lactate dehydrogenase (LDH) through changes of fluorescence intensity of SiQDs. In this system, the fluorescence of SiQDs was first quenched by nicotinamide adenine dinucleotide (NADH), and then recovered with the addition of LDH, as NADH was consumed by catalytic reaction of LDH. A linear calibration chart of LDH is obtained in the range of 0.77-385 U/mL. The assay displays high selectivity towards LDH detection, and was successfully applied to the analysis of LDH in human serum samples. This assay has great prospects for the diagnosis and prognosis of various diseases, especially melanoma.
Collapse