1
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Xue R, Liu Y, Wu X, Lv Y, Guo J, Yang GY. Covalent Organic Frameworks Meet Titanium Oxide. ACS NANO 2024. [PMID: 39028766 DOI: 10.1021/acsnano.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In order to expand the applicability of materials and improve their performance, the combined use of different materials has increasingly been explored. Among these materials, inorganic-organic hybrid materials often exhibit properties superior to those of single materials. Covalent organic frameworks (COFs) are famous crystalline porous materials constructed by organic building blocks linked by covalent bonds. In recent years, the combination of COFs with other materials has shown interesting properties in diverse fields, and the composite materials of COFs and TiO2 have been investigated more and more. These two outstanding materials are combined through covalent bonding, physical mixing, and other methods and exhibit excellent performance in various fields, including photocatalysis, electrocatalysis, sensors, separation, and energy storage and conversion. In this Review, the current preparation methods and applications of COF-TiO2 hybrid materials are introduced in detail, and their future development and possible problems are discussed and prospected, which is of great significance for related research. It is believed that these interesting hybrid materials will show greater application value as research progresses.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yinsheng Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Jixi Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Liu S, Wang YZ, Tang YF, Fu XZ, Luo JL. Emerging Nanomaterials toward Uranium Extraction from Seawater: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311130. [PMID: 38247198 DOI: 10.1002/smll.202311130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon-free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast-growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials-properties-activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials.
Collapse
Affiliation(s)
- Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - You-Zi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
4
|
Firouzy M, Ghiasvand A, Hashemi P. Harnessing an amide-based covalent organic framework in solid-phase extraction for chlorophenol analysis in industrial wastewaters. J Sep Sci 2024; 47:e2400113. [PMID: 38819739 DOI: 10.1002/jssc.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
An amide-based covalent organic framework (COF) was successfully synthesized using the reaction between 1,3,5-trimesoyl chloride and ethylenediamine. The structure and morphology of the COF were characterized using Fourier-transform infrared spectra, nuclear magnetic resonance spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area analysis. The COF was employed as a solid-phase extraction adsorbent for the sampling and preconcentration of chlorophenols from industrial wastewater samples prior to high-performance liquid chromatography with ultraviolet detection. The experimental parameters influencing the extraction efficiency including type and volume of eluent solvent, sample solution volume, salt concentration, sample flow rate, and sample solution pH were investigated and optimized using a response surface methodology employing Box-Behnken-design. Under optimized conditions, calibration curves exhibited good linearities over the range of 0.003-10 µg/mL with determination coefficients (R2) ranging from 0.9982 to 0.9999. The method's limits of detection ranged from 0.001 to 0.01 µg/mL. Good repeatability was achieved with relative standard deviations below 4.7%. The developed procedure utilizing the COF adsorbent was successfully applied to determine chlorophenols accurately and precisely in various industrial wastewater samples.
Collapse
Affiliation(s)
- Masoumeh Firouzy
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Payman Hashemi
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| |
Collapse
|
5
|
Huang Y, Liao J, Li J, Cheng C, Zhang Y, Peng Y. Tailoring chelating sites in two-dimensional covalent organic framework nanosheets for enhanced uranium capture. Chem Commun (Camb) 2024; 60:1619-1622. [PMID: 38230677 DOI: 10.1039/d3cc05125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, we intricately designed and synthesized two isoreticular two-dimensional covalent organic framework nanosheets, namely TAPA-COF-1 and TAPA-COF-2, distinguished by their unique spatial arrangement of hydroxyl groups. These precisely engineered nanosheets were employed as a tailored platform for the selective capture of uranium, due to their tunable chelating sites and characteristic sheet-like morphology. Notably, TAPA-COF-1, featuring ortho-hydroxyl groups, demonstrated a significantly enhanced adsorption capacity for uranium capture originating from the additional oriented adjacent phenolic hydroxyl chelating sites in comparison to TAPA-COF-2 with para-hydroxyl groups, which was proved by theoretical calculation. The impressive features of TAPA-COF-1, including its notable selectivity, rapid adsorption kinetics, and high uptake capacity (657.2 mg g-1), endow it as a highly promising candidate for uranium capture.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.
| | - Jiahao Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Changming Cheng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang 612900, P. R. China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China.
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
6
|
Wang J, Xu B. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107267. [PMID: 37598575 DOI: 10.1016/j.jenvrad.2023.107267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Technetium isotope 99Tc is a main radioactive waste produced in the process of nuclear reaction, which has the characteristics of long half-life and strong environmental mobility, and can be bio-accumulated in organisms, resulting in serious threat to human health and ecosystem. Adsorption method is widely used in the field of removing radionuclides from water due to the advantages of high treatment rate, simple and mature industrial application. In this review paper, the recent advances in research and application of various adsorption materials for 99Tc pollution treatment were summarized and analyzed for the first time, including inorganic adsorbents, such as activated carbon, zero-valent iron, metallic minerals, clay minerals, layered double hydroxides (LDHs), tin-based materials, and sulfur-based materials; organic adsorbents, such as porous organic polymers (POPs), covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and ion exchange resin; and biological adsorbents, such as biopolymers (chitosan, cellulose, alginate), and microbial cells. The performance characteristics and the adsorption kinetics and isotherms of various adsorption materials were discussed. This review could deepen the understanding of the adsorptive removal of 99Tc from aqueous solution, and provide a reference for the future research in this field.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Bowen Xu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
7
|
Bai Y, Wang C, Lu W, Xie C, Song W, Zhang Z, Wang J. Exploration of the Performance and Mechanism of Uranium Adsorption by a Covalent Organic Framework Possessing the Thiazole Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16163-16173. [PMID: 37922413 DOI: 10.1021/acs.langmuir.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
This study prepared an active 2-D covalent organic skeleton (HDU-27) with a network structure, high crystallinity, considerable specific surface area, excellent pore structure, and excellent stability. Kinetic studies manifested that HDU-27 could effectively capture uranium as monolayer chemisorption within a very short kinetic equilibrium time (10 min). In particular, the temperature significantly and positively impacted the uranium adsorption performance of HDU-27. At 298, 313, and 328 K, the adsorption capacity reached 269.2, 488.8, and 576.2 mg g-1, respectively, suggesting the potential to treat high-temperature industrial wastewater containing uranium. HDU-27 had high stability and recoverability with an adsorption efficiency of 98.5% after five adsorption-desorption cycles. According to X-ray photoelectron spectroscopy, the mechanism of interaction between U(VI) and HDU-27 was mainly the chelation of UO22+ by the N atom in the thiazole structure and the strong coordination of the O atom in the keto structure with UO22+. More excitingly, HDU-27 could chemically reduce soluble U(VI) to insoluble U(IV) and release binding sites for the adsorption of additional U(VI). In conclusion, HDU-27 has outstanding potential for uranium adsorption from industrial wastewater containing uranium.
Collapse
Affiliation(s)
- Yuxuan Bai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wen Lu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chengde Xie
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wenhui Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiong Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
8
|
Fan J, Li J, Zhou W, Gao H, Lu R, Guo H. An 'on-off-on' fluorescent switch based on a luminous covalent organic framework for the rapid and selective detection of glyphosate. LUMINESCENCE 2023; 38:1729-1737. [PMID: 37400417 DOI: 10.1002/bio.4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Glyphosate, the most used herbicide in the world, has a residue problem that cannot be ignored. However, glyphosate itself does not have fluorescence emission and lacks the conditions for fluorescence detection. In this work, a rapid and selective fluorescence detection method of glyphosate was designed by an 'on-off-on' fluorescent switch based on a luminous covalent organic framework (L-COF). Only the fixed concentration of Fe3+ as an intermediate could trigger the fluorescent switch and no incubation step was required. The proposed method showed good accuracy with a correlation coefficient of 0.9978. The method's limits of detection and quantitation were 0.88 and 2.93 μmol/L, which were lower than the maximum allowable residue limits in some regulations. Environmental water samples and tomatoes were selected as actual samples to verify the application in a complex matrix. A satisfactory mean recovery from 87% to 106% was gained. Furthermore, Fe3+ could induce fluorescence quenching of L-COF through the photo-induced electron transfer (PET) effect, while the addition of glyphosate could block the PET effect to achieve detection. These results demonstrated the proposed method had abilities to detect glyphosate and broaden the application of L-COF.
Collapse
Affiliation(s)
- Jiaxuan Fan
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | | | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Lin X, Xin W, Chen S, Song Y, Yang L, Qian Y, Fu L, Cui Y, He X, Li T, Zhang Z, Wu Y, Kong XY, Jiang L, Wen L. Skeleton engineering of rigid covalent organic frameworks to alter the number of binding sites for improved radionuclide extraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131978. [PMID: 37399726 DOI: 10.1016/j.jhazmat.2023.131978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Crystalline porous covalent frameworks (COFs) have been considered as a platform for uranium extraction from seawater and nuclear waste. However, the role of rigid skeleton and atomically precise structures of COFs is often ignored in the design of defined binding configuration. Here, a COF with an optimized relative position of two bidentate ligands realizes full potential in uranium extraction. Compared with the para-chelating groups, the optimized ortho-chelating groups with oriented adjacent phenolic hydroxyl groups on the rigid skeleton endow an additional uranyl binding site, thereby increasing the total number of binding sites up to 150%. Experimental and theoretical results indicate that the uranyl capture is greatly improved via the energetically favored multi-site configuration and the adsorption capacity reaches up to 640 mg g-1, which exceeds that of most reported COF-based adsorbents with chemical coordination mechanism in uranium aqueous solution. This ligand engineering strategy can efficiently advance the fundamental understanding of designing the sorbent systems for extraction and remediation technology.
Collapse
Affiliation(s)
- Xiangbin Lin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shusen Chen
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Yan Song
- Beijing Research Institute of Chemical Engineering and Metallurgy, CNNC Key Laboratory on Uranium Extraction from Seawater, Beijing, China
| | - Linsen Yang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lin Fu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanglansen Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiaofeng He
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tinyang Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yadong Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
10
|
Liu X, Gao F, Jin T, Ma K, Shi H, Wang M, Gao Y, Xue W, Zhao J, Xiao S, Ouyang Y, Ye G. Efficient and selective capture of thorium ions by a covalent organic framework. Nat Commun 2023; 14:5097. [PMID: 37607947 PMCID: PMC10444833 DOI: 10.1038/s41467-023-40704-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
The selective separation of thorium from rare earth elements and uranium is a critical part of the development and application of thorium nuclear energy in the future. To better understand the role of different N sites on the selective capture of Th(IV), we design an ionic COF named Py-TFImI-25 COF and its deionization analog named Py-TFIm-25 COF, both of which exhibit record-high separation factors ranging from 102 to 105. Py-TFIm-25 COF exhibits a significantly higher Th(IV) uptake capacity and adsorption rate than Py-TFImI-25 COF, which also outperforms the majority of previously reported adsorbents. The selective capture of Py-TFImI-25 COF and Py-TFIm-25 COF on thorium is via Th-N coordination interaction. The prioritization of Th(IV) binding at different N sites and the mechanism of selective coordination are then investigated. This work provides an in-depth insight into the relationship between structure and performance, which can provide positive feedback on the design of novel adsorbents for this field.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China
| | - Feng Gao
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China
| | - Tiantian Jin
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China
| | - Ke Ma
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China
| | - Haijiang Shi
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China
| | - Ming Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, 570228, Haikou, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, 570228, Haikou, China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Jing Zhao
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China.
| | - Songtao Xiao
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China.
| | - Yinggen Ouyang
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China.
| | - Guoan Ye
- Department of Radiochemistry, China Institute of Atomic Energy, 102413, Beijing, China.
| |
Collapse
|
11
|
Leng R, Sun Y, Wang C, Qu Z, Feng R, Zhao G, Han B, Wang J, Ji Z, Wang X. Design and Fabrication of Hypercrosslinked Covalent Organic Adsorbents for Selective Uranium Extraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [DOI: doi.org/10.1021/acs.est.3c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Ran Leng
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yichen Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chenzhan Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhao Qu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Rui Feng
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guixia Zhao
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bing Han
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhuoyu Ji
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
12
|
Yang Z, Chen G, Shen J, Ma C, Gu J, Zhu C, Li L, Gao H. A hydrogen bonding based SERS method for direct label-free L-hydroxyproline detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122834. [PMID: 37178585 DOI: 10.1016/j.saa.2023.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The detection of non-protein nitrogen adulterants is a major challenge in dairy testing. As a marker molecule of animal hydrolyzed protein, the presence of non-edible L-hydroxyproline (L-Hyp) molecules can be used to identify low-quality milk containing components of animal hydrolyzed protein. However, it is still difficult to detect L-Hyp directly in milk. The Ag@COF-COOH substrate in this paper can be used to realize label-free L-Hyp sensitive detection based on the hydrogen bond transition mechanism. To explore the mechanism, the binding sites of hydrogen bond interaction have been verified experimentally and computationally, and the charge transfer process was also explained in terms of HOMO/LOMO energy level. In conclusion, the quantitative models for L-Hyp in an aqueous environment and in milk were developed. The limit of detection (LOD) of L-Hyp in an aqueous environment could reach 8.18 ng/mL, with R2 of 0.982. The linear range of quantitative detection in milk was 0.5-1000 μg/mL and the LOD was as low as 0.13 μg/mL. In this work, a hydrogen bond interaction based Surface-enhanced Raman spectroscopy (SERS) method for the label-free detection of L-Hyp was proposed, which complemented the application of SERS technology in the detection of dairy products.
Collapse
Affiliation(s)
- Zichen Yang
- School of Science, Jiangnan University, Wuxi, China; School of Internet of Things Engineering, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China.
| | - Jialu Shen
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Jiao Gu
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Chun Zhu
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| | - Hui Gao
- School of Science, Jiangnan University, Wuxi, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi, China
| |
Collapse
|
13
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
14
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
15
|
Yang M, Ji W. Facile Synthesis of Quinolinecarboxylic Acid-Linked Covalent Organic Framework via One-Pot Reaction for Highly Efficient Removal of Water-Soluble Pollutants. Molecules 2023; 28:molecules28093752. [PMID: 37175162 PMCID: PMC10179942 DOI: 10.3390/molecules28093752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
To efficiently eliminate highly polar organic pollutants from water has always been a difficult issue, especially in the case of ultralow concentrations. Herein, we present the facile synthesis of quinolinecarboxylic acid-linked COF (QCA-COF) via the Doebner multicomponent reaction, possessing multifunction, high specific surface area, robust physicochemical stability, and excellent crystallinity. The marked feature lies in the quinolinyl and carboxyl functions incorporated simultaneously to QCA-COF in one step. The major cis-orientation of carboxyl arms in QCA-COF was speculated by powder X-ray diffraction and total energy analysis. QCA-COF demonstrates excellent adsorption capacity for water-soluble organic pollutants such as rhodamine B (255.7 mg/g), methylene blue (306.1 mg/g), gentamycin (338.1 mg/g), and 2,4-dichlorophenoxyacetic acid (294.1 mg/g) in water. The kinetic adsorptions fit the pseudo-second order model and their adsorption isotherms are Langmuir model. Remarkably, QCA-COF can capture the above four water-soluble organic pollutants from real water samples at ppb level with higher than 95% removal efficiencies and excellent recycling performance.
Collapse
Affiliation(s)
- Mingzhu Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
16
|
Wang H, Han J, Li Z, Wang Z. Effective extraction of the metabolites of toluene and xylene based on a postsynthetic-modified magnetic covalent organic polymer. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130797. [PMID: 36680895 DOI: 10.1016/j.jhazmat.2023.130797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Toluene and xylene are volatile organic compounds, and long-term exposure to toluene and xylene may cause brain structure and nervous system damage. To evaluate exposure to toluene and xylene in the environment, it is usually possible to monitor their metabolites in organisms, hippuric acid (HA) and methylhippuric acid (MHA). In this work, we designed a new magnetic solid phase extraction (MSPE) sorbent, zirconium postsynthetic-modified magnetic covalent organic polymer (Fe3O4@COP-COOZr), for purifying and enriching HA and 4-MHA. Zirconium ions were immobilized on the magnetic COP surface by postsynthetic modification without the use of additional coating layers or chelating ligands. The developed Fe3O4@COP-COOZr interacted with HA and 4-MHA through the π-π stacking effect and electrostatic interactions, as well as strong chelation with coordinatively unsaturated zirconium sites. The promising affinity material of Fe3O4@COP-COOZr in MSPE had high stability and recyclability. The established MSPE-HPLC-UV method showed low sorbent consumption (10 mg) and high sensitivity (LODs less than 0.1 μg L-1), and can be used for the analysis of HA and 4-MHA in real samples. The recoveries of the proposed method in real urine samples for the simultaneous determination of HA and 4-MHA were in the range of 83.5-103.2 %, and the RSDs were 0.9-7.1 %.
Collapse
Affiliation(s)
- Huiqi Wang
- Instrumental Analysis Center of Qingdao University, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Shandong 266071, China
| | - Jingjing Han
- Instrumental Analysis Center of Qingdao University, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Shandong 266071, China
| | - Zhanfeng Li
- Instrumental Analysis Center of Qingdao University, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Shandong 266071, China
| | - Zonghua Wang
- Instrumental Analysis Center of Qingdao University, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Shandong 266071, China.
| |
Collapse
|
17
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
18
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
19
|
Synthesis of Pillar[5]arene- and Phosphazene-Linked Porous Organic Polymers for Highly Efficient Adsorption of Uranium. Molecules 2023; 28:molecules28031029. [PMID: 36770695 PMCID: PMC9920965 DOI: 10.3390/molecules28031029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
It is crucial to design efficient adsorbents for uranium from natural seawater with wide adaptability, effectiveness, and environmental safety. Porous organic polymers (POPs) provide superb tunable porosity and stability among developed porous materials. In this work, two new POPs, i.e., HCCP-P5-1 and HCCP-P5-2 were rationally designed and constructed by linked with macrocyclic pillar[5]arene as the monomer and hexachlorophosphate as the core via a macrocycle-to-framework strategy. Both pillar[5]arene-containing POPs exhibited high uranium adsorption capacity compared with previously reported macrocycle-free counterparts. The isothermal adsorption curves and kinetic studies showed that the adsorption of POPs on uranium was consistent with the Langmuir model and the pseudo-second-order kinetic model. Especially, HCCP-P5-1 has reached 537.81 mg/g, which is greater than most POPs that have been reported. Meanwhile, the comparison between both HCCP-P5-1 and HCCP-P5-2 can illustrate that the adsorption capacity and stability could be adjusted by the monomer ratio. This work provides a new idea for the design and construction of uranium adsorbents from macrocycle-derived POPs.
Collapse
|
20
|
Luan J, Zhu X, Yu L, Li Y, He X, Chen L, Zhang Y. Construction of magnetic covalent organic frameworks functionalized by benzoboroxole for efficient enrichment of glycoproteins in the physiological environment. Talanta 2023; 251:123772. [DOI: 10.1016/j.talanta.2022.123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
|
21
|
Suleiman B, Abdullah CAC, Tahir MIM, Bahbouh L, Rahman MBA. Covalent organic frameworks: Recent advances in synthesis, characterization and their application in the environmental and agricultural sectors. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
A low-cost, efficient and selective detection method of acaricide residues: adsorption study. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Li L, Li H, Lin M, Wen J, Hu S. Effects of chain conformation on uranium adsorption performance of amidoxime adsorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Chen Q, Li B, Wang J, Zhu H, Chen X, Hu Y, Zhou J, Wang W, Zheng W, Yan T. Selective coordination behaviors of Uranium(VI) with novel asymmetrical tetra-alkylcarbamides. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Zhang H, Nian Q, Dai H, Wan X, Xu Q. A nanofiber-mat-based solid-phase sensor for sensitive ratiometric fluorescent sensing and fine visual colorimetric detection of tetracycline. Food Chem 2022; 395:133597. [DOI: 10.1016/j.foodchem.2022.133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
|
26
|
Liang Q, Jiang B, Yang N, Zhang L, Sun Y, Zhang L. Superhydrophilic Modification of Polyvinylidene Fluoride Membrane via a Highly Compatible Covalent Organic Framework-COOH/Dopamine-Integrated Hierarchical Assembly Strategy for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45880-45892. [PMID: 36165501 DOI: 10.1021/acsami.2c13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The integration of membranes with additives such as functionalized nanomaterials can be recognized as an effective method to enhance membrane performance. However, to obtain an efficient nanoparticle-decorated membrane, the compatibility of nanomaterials remains a challenge. Hydrophilic carboxylated covalent organic frameworks (COF-COOH) might be expected to avoid the drawbacks of aggregation and easy shedding of inorganic materials caused by the poor interfacial compatibility. Herein, a highly compatible dip-coating strategy was proposed for the superhydrophilic modification of polyvinylidene fluoride membrane via COF-COOH integrated with dopamine. COF-COOH together with polydopamine nanoparticles were uniformly and stably attached to the membrane due to the high interfacial compatibility, constructing a coating with rough hierarchical nanostructures and abundant carboxyl groups. The synergistic effects of multiscale structures and chemical groups endow the membrane with superhydrophilicity and underwater superoleophobicity, the water contact angle decreased from 123 to 15°, and the underwater oil contact angle increased from 132 to 162°. Accordingly, the modified membrane exhibits an ultrahigh oil rejection ratio (>98%), a high flux (the maximum reaches 1843.48 L m-2 h-1 bar-1), attractive antifouling ability, and impregnable stability. This work would provide a momentous reference for the application of COF-COOH in practical oily wastewater treatment.
Collapse
Affiliation(s)
- Qi Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bin Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Na Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Longfei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongli Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
27
|
Yang Z, Ma C, Gu J, Wu Y, Zhu C, Li L, Gao H, Yin W, Wang Z, Chen G. Detection of Melamine by Using Carboxyl-functionalized Ag-COF as A Novel SERS Substrate. Food Chem 2022; 401:134078. [DOI: 10.1016/j.foodchem.2022.134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/08/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
|
28
|
Tachibana Y, Kalak T, Tanaka M. Chromatographic Purification of Lithium, Vanadium, and Uranium from Seawater Using Organic Composite Adsorbents Composed of Benzo-18-Crown-6 and Benzo-15-Crown-5 Embedded in Highly Porous Silica Beads. ACS OMEGA 2022; 7:27410-27421. [PMID: 35967073 PMCID: PMC9366790 DOI: 10.1021/acsomega.2c02427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 06/01/2023]
Abstract
The use of the composite adsorbents composed of benzo-15-crown-5 (abbreviated as BC15) and benzo-18-crown-6 (BC18) for the simultaneous recovery of vanadium (V), uranium (U), and lithium (Li) from seawater has been proposed for industrial applications. The adsorption and desorption behavior of these elements on BC15 and BC18 has been examined in various types of aqueous solutions over a wide temperature range. As a result, it was shown that BC15 and BC18 have sufficient adsorption ability for the simultaneous recovery of V, U, and Li from seawater. Moreover, it was seen that the distribution coefficients (K d) of V decrease with an increase in [HCl]T (subscript T: total concentration), indicating that the anionic V species such as H2V4O13 4- are exponentially changed into the cationic V species such as V3+, VO2+, and VO2 + under the condition [HCl]T = 1.0 M, and the complexation reactions between BC15 (or BC18) and the initial V structures are inhibited. Besides, it was reasonably shown that the adsorption mechanism is the path through the electrostatic interaction between the anionic V species such as H2V4O13 4-, and the -C-O-C- single bond that the electron density is eccentrically located in ether functional groups in crown ether rings in BC15 and BC18 (or the -C-OH single bond that the electron density is eccentrically located in bisphenol A in BC15 and BC18). Then, the chromatography experiment of V, U, and Li on BC15 (or BC18) at 298 K was carried out by flowing seawater, 1.0 × 10-2 M HCl, and 1.0 M HCl in sequence. The first peak of V can be separated from the plateau of Li and the first and second peaks of U in the case of the BC15 system. The recovery ratios of V and U were more than 80%. On the other hand, entirely overlapping chromatograms were obtained in the case of the BC18 system, and accordingly, the recovery ratios of V and U were much lower. In short, the separation efficiency of V with BC15 is more pre-eminent than that with BC18. Judging from these results, the durability of BC15 was finally assessed for industrial applications, that is, the aforementioned chromatography experiment was repeatedly carried out to check whether V, U, and Li were stably and mutually separated from seawater or not. The evidence that the recovery performances of V, U, and Li from seawater do not decrease at all after at least five cycle tests was provided. This indicates that this information will be valuable for the development of a practical chromatographic technology to simultaneously recover V, U, and Li from seawater.
Collapse
Affiliation(s)
- Yu Tachibana
- Department
of Nuclear System Safety Engineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka-shi, Niigata 940-2188, Japan
| | - Tomasz Kalak
- Department
of Industrial Products and Packaging Quality, Institute of Quality
Science, Poznań University of Economics
and Business, Niepodległości
10, Poznań 61-875, Republic of Poland
| | - Masahiro Tanaka
- National
Institute for Fusion Science, 322-6, Oroshi-cho, Toki-shi, Gifu 509-5292, Japan
| |
Collapse
|
29
|
Hovey JL, Dittrich TM, Allen MJ. Coordination Chemistry of Surface-Associated Ligands for Solid–Liquid Adsorption of Rare-Earth Elements. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Wang C, Xi W, Guo R, Wang S, Lu W, Bai Y, Wang J. A novel amidoxime-functionalized covalent organic framework for removal of U(VI) from uranium-containing wastewater with appreciable efficiency and selectivity. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08294-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Pu Y, Qiang T, Ren L. Waste feather fiber based high extraction capacity bio-adsorbent for sustainable uranium extraction from seawater. Int J Biol Macromol 2022; 206:699-707. [PMID: 35259433 DOI: 10.1016/j.ijbiomac.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Recycling uranium from seawater is of great significance to the development of nuclear industry. However, due to high salinity and low uranium concentration in seawater, there are still many challenges in current seawater uranium extraction technology. In this study, waste feather fibers (FF) were used as raw materials to develop a phosphonate-functionalized feather fiber (FF-PT). The study on the adsorption performance shows that FF-PT have good adsorption and recycling performance for uranium. The study on the adsorption performance shows that FF-PT have good adsorption and recycling performance for uranium. The adsorption capacity reaches up to 342.5 mg·g-1 in the 8 ppm uranium solution, and service life of at least 10 cycles were obtained. In addition, in the environment with high salinity and the coexistence of metal competitive ions, FF-PT also shows excellent selectivity, and it can reach 3.22 mg·g-1 adsorption capacity after immersed in natural seawater for 30 days. Combined with the results of economic analysis, we believe that the FF-PT has broad application prospects in the industrialized uranium extraction from seawater.
Collapse
Affiliation(s)
- Yadong Pu
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Taotao Qiang
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Longfang Ren
- College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
32
|
|
33
|
Guo R, Liu Y, Huo Y, Zhang A, Hong J, Ai Y. Chelating effect between uranyl and pyridine N containing covalent organic frameworks: A combined experimental and DFT approach. J Colloid Interface Sci 2022; 606:1617-1626. [PMID: 34500163 DOI: 10.1016/j.jcis.2021.08.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Covalent organic frameworks (COFs) are promising adsorbents for removing heavy metal ions, and have high crystallinity, a porous structure, and conjugated stability. N-containing functional groups are known to have great affinity for uranyl ions. In this work, to explore the peculiarity of the pyridine N structure as an efficient adsorbent, we chose 2,2'-dipyridine-5,5'-diamine (Bpy) and pyridine-2,5'-diamine (Py) as the core skeletons, and 1,3,5-triformylphloroglucinol (Tp) as the linker to synthesize two crystalline and stable N-containing COFs named TpBpy and TpPy, respectively, through a facile solvothermal method. Characterization results demonstrated that TpBpy and TpPy possessed regularly growing pore sizes, large specific surface areas and relatively strong thermal resistances. The results of batch experiments showed that both COF materials were capable of the effective removal of uranyl with uptake capacities of 115.45 mg g-1 and 291.79 mg g-1, respectively. In addition, density functional theory (DFT) simulations highlighted the beneficial chelation effect of the double N structure in pyridine monomers for removing uranyl ions. Combining systematic experimental and theoretical analyses, the adsorption process and interaction mode of porous COFs and UO22+ were revealed, to provide predictable support for the application of pyridine N-containing COFs in the field of environmental remediation.
Collapse
Affiliation(s)
- Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yingzhong Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Anrui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jiahui Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
34
|
Rasheed T, Kausar F, Rizwan K, Adeel M, Sher F, Alwadai N, Alshammari FH. Two dimensional MXenes as emerging paradigm for adsorptive removal of toxic metallic pollutants from wastewater. CHEMOSPHERE 2022; 287:132319. [PMID: 34826950 DOI: 10.1016/j.chemosphere.2021.132319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Effective methods for removing harmful metals from wastewater have had a huge impact on reducing freshwater scarcity. Because of its excellent removal effectiveness, simplicity and low cost at ambient conditions, adsorption is one of the most promising purifying approaches. MXene-based nanoarchitectures have proven to be effective adsorbents in a variety of harmful metal removal applications. This owes from the distinctive features such as, hydrophilicity, high surface area, electron-richness, great adsorption capacity, and activated metallic hydroxide sites of MXenes. Given the rapid advancement in the design and synthesis of MXene nanoarchitectures for water treatment, prompt updates on this research area are needed that focus on removal of toxic metal, such as production routes and characterization techniques for the advantages, merits and limitations of MXenes for toxic metal adsorption. This is in addition to the fundamentals and the adsorption mechanism tailored by the shape and composition of MXene based on some representative paradigms. Finally, the limits of MXenes are highlighted, as well as their potential future research directions for wastewater treatment. This manuscript may initiate researchers to improve unique MXene-based nanostructures with distinct compositions, shapes, and physiochemical merits for effective removal of toxic metals from wastewater.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Fahmeeda Kausar
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Komal Rizwan
- Department of Chemistry University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Muhammad Adeel
- Faculty of Applied Engineering, IPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Norah Alwadai
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia
| | - Fwzah H Alshammari
- Department of Physics, University Colleges at Nairiyah, University of Hafr Al Batin (UHB), Nairiyah 31981, Saudi Arabia
| |
Collapse
|
35
|
Zhang Q, Zeng K, Wang C, Wei P, Zhao X, Wu F, Liu Z. An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvothermal polymerization of a porous polymer functionalized with a high concentration of imidazole groups and its application in the efficient extraction of uranium from water.
Collapse
Affiliation(s)
- Qinghua Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Kai Zeng
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, China
| | - Changfu Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Peng Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Xiaohong Zhao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Faming Wu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
| | - Zhirong Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Nanchang, China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
36
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
Gendy EA, Oyekunle DT, Ali J, Ifthikar J, El-Motaleb Mosad Ramadan A, Chen Z. High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 238-239:106710. [PMID: 34481100 DOI: 10.1016/j.jenvrad.2021.106710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Dealing with unwanted nuclear waste is still a serious issue from the point of view of humans and the environment because of its harmful and dangerous effects. Recently, porous organic frameworks (POFs) have gained an increasing concern as effective materials in the removal of various types of hazardous metal ions, especially radioactive metal ions. POFs are a unique class that included covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) with strong covalent bonds, large surface area, high adsorption capacity, tunable porosity, and a porous structure with more efficient than conventional adsorbents. This review highlights the recent developments of POFs for the rapid elimination of radionuclide. The unique characteristics, adsorption properties, and interaction mechanisms between radioactive metal ions and the POF-based materials are summarized. Also, prospects for enhancing the performance of POFs to capture radioactive metal ions are discussed.
Collapse
Affiliation(s)
- Eman Abdelnasser Gendy
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Chemistry Department, Faculty of Science, Kafrelsheikh University, El-Geish Street, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Daniel Temitayo Oyekunle
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jawad Ali
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Abd El-Motaleb Mosad Ramadan
- Chemistry Department, Faculty of Science, Kafrelsheikh University, El-Geish Street, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
38
|
Adsorption-reduction strategy of U(VI) on NZVI-supported zeolite composites via batch, visual and XPS techniques. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Phytic acid-decorated porous organic polymer for uranium extraction under highly acidic conditions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Ahmed I, Jhung SH. Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213989] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Peng H, Li F, Zeng Y, Li M, Liao J, Lan T, Yang Y, Yang J, Liu N. A self-assembled supramolecular organic material for selective extraction of uranium from aqueous solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Kalak T, Tachibana Y. Removal of lithium and uranium from seawater using fly ash and slag generated in the CFBC technology. RSC Adv 2021; 11:21964-21978. [PMID: 35480828 PMCID: PMC9036370 DOI: 10.1039/d0ra09092a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Fly ash and slag were produced as a result of the incineration of municipal sewage sludge using the circulating fluidized bed combustion (CFBC) technology and were examined for the simultaneous recovery of lithium and uranium from seawater in batch adsorption experiments. These waste materials have been characterized in terms of their physicochemical properties using several research methods including particle size distribution, bulk density, SEM-EDS analysis, thermogravimetry, SEM and TEM morphology, BET, specific surface area, pore volume distribution by the BJH method, ATR FT-IR, and zeta potential. The fly ash and slag waste materials showed the following research results for Li-ion recovery: adsorption efficiency 12.1% and 6.8%, adsorption capacity 0.55 mg g-1 and 0.15 mg g-1, respectively. Better results were reported for U ion recovery: adsorption efficiency 98.4% and 99.9%, adsorption capacity 21.3 mg g-1 and 56.7 mg g-1 for fly ash and slag, respectively. In conclusion, the conducted research revealed that CFBC fly ash and slag are promising low-cost adsorbents for the effective recovery of Li and U ions from seawater.
Collapse
Affiliation(s)
- Tomasz Kalak
- Poznań University of Economics and Business, Institute of Quality Science, Department of Industrial Products and Packaging Quality Niepodległości 10 61-875 Poznań Poland
| | - Yu Tachibana
- Department of Nuclear System Safety Engineering, Graduate School of Engineering, Nagaoka University of Technology 1603-1, Kamitomioka Nagaoka Niigata 940-2188 Japan
| |
Collapse
|
43
|
Amidoximated polyorganophosphazene microspheres with an excellent property of U(VI) adsorption in aqueous solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07744-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Zhao T, Niu Q, Huang G, Chen Q, Gao Y, Bi J, Wu L. Rational construction of Ni(OH) 2 nanoparticles on covalent triazine-based framework for artificial CO 2 reduction. J Colloid Interface Sci 2021; 602:23-31. [PMID: 34118602 DOI: 10.1016/j.jcis.2021.05.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/18/2022]
Abstract
Artificial photoreduction of CO2 to chemical fuel is an intriguing and reliable strategy to tackle the issues of energy crisis and climate change simultaneously. In the present study, we rationally constructed a Ni(OH)2-modified covalent triazine-based framework (CTF-1) composites to serve as cocatalyst ensemble for superior photoreduction of CO2. In particular, the optimal Ni(OH)2-CTF-1 composites (loading ratio at 0.5 wt%) exhibited superior photocatalytic activity, which surpassed the bare CTF-1 by 33 times when irradiated by visible light. The mechanism for the enhancement was systematically investigated based on various instrumental analyses. The origin of the superior activity was attributable to the enhanced CO2 capture, more robust visible-light response, and improved charge carrier separation/transfer. This study offers an innovative pathway for the fabrication of noble-metal-free cocatalysts on CTF semiconductors and deepens the understanding of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Tiansu Zhao
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Qing Niu
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China.
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xue Yuan Road, New Campus, Minhou, Fujian 350108, PR China
| |
Collapse
|
45
|
Silver-doped MIL-101(Cr) for rapid and effective capture of iodide in water environment: exploration on adsorption mechanism. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation (N Y) 2021; 2:100076. [PMID: 34557733 PMCID: PMC8454561 DOI: 10.1016/j.xinn.2021.100076] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/03/2021] [Indexed: 11/05/2022] Open
Abstract
Covalent organic frameworks (COFs) are a new type of crystalline porous polymers known for chemical stability, excellent structural regularity, robust framework, and inherent porosity, making them promising materials for capturing various types of pollutants from aqueous solutions. This review thoroughly presents the recent progress and advances of COFs and COF-based materials as superior adsorbents for the efficient removal of toxic heavy metal ions, radionuclides, and organic pollutants. Information about the interaction mechanisms between various pollutants and COF-based materials are summarized from the macroscopic and microscopic standpoints, including batch experiments, theoretical calculations, and advanced spectroscopy analysis. The adsorption properties of various COF-based materials are assessed and compared with other widely used adsorbents. Several commonly used strategies to enhance COF-based materials' adsorption performance and the relationship between structural property and sorption ability are also discussed. Finally, a summary and perspective on the opportunities and challenges of COFs and COF-based materials are proposed to provide some inspiring information on designing and fabricating COFs and COF-based materials for environmental pollution management.
Collapse
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Hongwei Pang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Xuewei Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Qian Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Ning Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, P.R. China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
47
|
Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries. J Colloid Interface Sci 2021; 591:264-272. [PMID: 33607400 DOI: 10.1016/j.jcis.2021.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Covalent organic frameworks (COFs) with pre-designed structure and customized properties have been employed as sulfur storage materials for lithium-sulfur (Li-S) batteries. In this work, a cationic mesoporous COF (COF-NI) was synthesized by grafting a quaternary ammonium salt group onto the pore channel of COFs via a one-pot three components tandem reaction strategy. The post-functionalized COFs were utilized as the matrix framework to successfully construct the Li-S battery with high-speed capacity and long-term stability. The experimental results showed that, after loading active material sulfur, cationic COF-NI effectively suppressed the shuttle effect of the intermediate lithium polysulfide species in Li-S batteries, and exhibited better cycle stability than the as-obtained neutral COF (COF-Bu). For example, compared with COF-Bu based sulfur cathode (521 mA h g-1), the cationic COF-NI based sulfur cathode maintained a discharge capacity of 758 mA h g-1 after 100 cycles. These results clearly showed that appropriate pore environment of COFs can be prepared by rational design, which can reduce the shuttle effect of lithium polysulfide species and improve the performance of Li-S battery.
Collapse
|
48
|
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation (N Y) 2021; 2:100076. [DOI: https:/doi.org/10.1016/j.xinn.2021.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
|
49
|
Xue R, Gou H, Zhang L, Liu Y, Rao H, Zhao G. A new squaraine-triazine based covalent organic polymer as an electrode material with long life and high performance for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d0nj03551c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reaction of squaric acid and melamine.
Collapse
Affiliation(s)
- Rui Xue
- School of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou 730070
- P. R. China
- Provincical Key Laboratory of Gansu Higher Education for City Enviromental Pollution Control
| | - Hao Gou
- School of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou 730070
- P. R. China
- Provincical Key Laboratory of Gansu Higher Education for City Enviromental Pollution Control
| | - Li Zhang
- School of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou 730070
- P. R. China
- Provincical Key Laboratory of Gansu Higher Education for City Enviromental Pollution Control
| | - Yinsheng Liu
- School of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou 730070
- P. R. China
- Provincical Key Laboratory of Gansu Higher Education for City Enviromental Pollution Control
| | - Honghong Rao
- School of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou 730070
- P. R. China
- Provincical Key Laboratory of Gansu Higher Education for City Enviromental Pollution Control
| | - Guohu Zhao
- School of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou 730070
- P. R. China
- Provincical Key Laboratory of Gansu Higher Education for City Enviromental Pollution Control
| |
Collapse
|
50
|
Liu C, Li Y, Wang X, Li B, Zhou Y, Liu D, Liu D, Liu S. Efficient extraction of antimony(III) by titanate nanosheets: Study on adsorption behavior and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111271. [PMID: 32920314 DOI: 10.1016/j.ecoenv.2020.111271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Antimony has been listed as a critical pollutant in many countries because of its toxic effects on earth organisms. In this study, titanate nanosheets (TNS) were prepared with a high specific surface area by alkaline hydrothermal method. The adsorption mechanism and adsorption capacity of removing Sb(III) from aqueous solutions with TNS as an adsorbent were investigated for the first time. The FTIR and XPS analysis indicated that the interlayer sodium ions of TNS were responsible for Sb(III) adsorption. The batch experiments were conducted on solution pH, adsorbent dosage, initial concentration and reaction time. The results exhibited that when pH was 2, the removal rate was about 90% with the dosage of TNS was 0.1 g/L. The adsorption reaction was exceedingly rapid in the initial 5 min, and then the reaction was in equilibrium after about 30 min. The experimental data were better fitted with Langmuir isotherm model, and the maximum adsorption amount could attain 232.56 mg/g. The experiments showed that TNS had outstanding anti-interference performance to common cations. Therefore, TNS were considered to be an excellent material for removing Sb(III) from aqueous solutions.
Collapse
Affiliation(s)
- Cong Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Ye Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
| | - Xiaoli Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Bolin Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Yuzhi Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Dongbin Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Dongxue Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Shuang Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|