1
|
Huo N, Ye S, Ouderkirk AJ, Tenhaeff WE. Porous Polymer Films with Tunable Pore Size and Morphology by Vapor Deposition. ACS APPLIED POLYMER MATERIALS 2022; 4:7300-7310. [PMID: 36277175 PMCID: PMC9578110 DOI: 10.1021/acsapm.2c01032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The fabrication of porous polymer thin films with precise thickness and morphological control through conventional solvent-based techniques is challenging. Herein, we present a fabrication method for porous polymer thin films based on chemical vapor deposition that provides control over pore size, pore morphology, and film thickness. The porous films are prepared by co-depositing crystallizable porogen molecules with cross-linked poly(glycidyl methacrylate) (pGMA) thin films, which are synthesized by initiated chemical vapor deposition (iCVD). As the porogen is deposited, it crystallizes and phase-separates from the polymer film; simultaneous polymerization of pGMA limits crystal growth, controlling the size of crystals. Using naphthalene as porogen resulted in thin films with pore sizes from 5.9 to 24.2 μm and porosities ranging from 59.4 to 78.4%. Using octamethylcyclotetrasiloxane as porogen, which is miscible with the GMA monomer, drastically reduced the pore dimensions, ranging from 14.4 to 65.3 nm with porosities from 8.0 to 33.2%. The film morphology was highly dependent on the relative kinetics of porogen crystallization, phase separation, and heterogeneous polymerization. The kinetics of these competing processes are discussed qualitatively based on nucleation theory and Cahn-Hilliard theory. Fourier-transform infrared spectroscopy confirmed the retention of the reactive epoxide functionality of glycidyl methacrylate, which can enable further chemical derivatization as required for application in optoelectronics, sensing, separations, and biomedical devices.
Collapse
Affiliation(s)
- Ni Huo
- Department
of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - Sheng Ye
- Facebook
Reality Labs, 9845 Willows
Rd, Redmond, Washington98052, United States
| | - Andrew J. Ouderkirk
- Facebook
Reality Labs, 9845 Willows
Rd, Redmond, Washington98052, United States
| | - Wyatt E. Tenhaeff
- Department
of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| |
Collapse
|
2
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
3
|
Gleason KK. Controlled Release Utilizing Initiated Chemical Vapor Deposited (iCVD) of Polymeric Nanolayers. Front Bioeng Biotechnol 2021; 9:632753. [PMID: 33634089 PMCID: PMC7902001 DOI: 10.3389/fbioe.2021.632753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
This review will focus on the controlled release of pharmaceuticals and other organic molecules utilizing polymeric nanolayers grown by initiated chemical vapor deposited (iCVD). The iCVD layers are able conform to the geometry of the underlying substrate, facilitating release from one- and two-dimensional nanostructures with high surface area. The reactors for iCVD film growth can be customized for specific substrate geometries and scaled to large overall dimensions. The absence of surface tension in vapor deposition processes allows the synthesis of pinhole-free layers, even for iCVD layers <10 nm thick. Such ultrathin layers also provide rapid transport of the drug across the polymeric layer. The mild conditions of the iCVD process avoid damage to the drug which is being encapsulated. Smart release is enabled by iCVD hydrogels which are responsive to pH, temperature, or light. Biodegradable iCVD layers have also be demonstrated for drug release.
Collapse
Affiliation(s)
- Karen K Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Reichstein W, Sommer L, Veziroglu S, Sayin S, Schröder S, Mishra YK, Saygili Eİ, Karayürek F, Açil Y, Wiltfang J, Gülses A, Faupel F, Aktas OC. Initiated Chemical Vapor Deposition (iCVD) Functionalized Polylactic Acid-Marine Algae Composite Patch for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13020186. [PMID: 33430187 PMCID: PMC7825612 DOI: 10.3390/polym13020186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
The current study aimed to describe the fabrication of a composite patch by incorporating marine algae powders (MAPs) into poly-lactic acid (PLA) for bone tissue engineering. The prepared composite patch was functionalized with the co-polymer, poly (2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) (p(HEMA-co-EGDMA)) via initiated chemical vapor deposition (iCVD) to improve its wettability and overall biocompatibility. The iCVD functionalized MAP–PLA composite patch showed superior cell interaction of human osteoblasts. Following the surface functionalization by p(HEMA-co-EGDMA) via the iCVD technique, a highly hydrophilic patch was achieved without tailoring any morphological and structural properties. Moreover, the iCVD modified composite patch exhibited ideal cell adhesion for human osteoblasts, thus making the proposed patch suitable for potential biomedical applications including bone tissue engineering, especially in the fields of dentistry and orthopedy.
Collapse
Affiliation(s)
- Wiebke Reichstein
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Levke Sommer
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
| | - Salih Veziroglu
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Selin Sayin
- Marine Science and Technology Faculty, Iskenderun Technical University, 31200 Iskenderun/Hatay, Turkey;
| | - Stefan Schröder
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark;
| | - Eyüp İlker Saygili
- Department of Medical Biochemistry, SANKO University, Şehitkamil, 27090 Gaziantep, Turkey;
| | - Fatih Karayürek
- Department of Periodontology, Cankiri Karatekin University, 18100 Cankiri, Turkey;
| | - Yahya Açil
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
| | - Aydin Gülses
- Department of Oral and Maxillofacial Surgery, Campus Kiel, University Hospital of Schleswig-Holstein, Arnold-Heller-Straße 3, 24105 Kiel, Germany; (L.S.); (Y.A.); (J.W.)
- Correspondence: (A.G.); (O.C.A.)
| | - Franz Faupel
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
| | - Oral Cenk Aktas
- Chair for Multicomponent Materials, Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany; (W.R.); (S.V.); (S.S.); (F.F.)
- Correspondence: (A.G.); (O.C.A.)
| |
Collapse
|
5
|
Xue T, Attarilar S, Liu S, Liu J, Song X, Li L, Zhao B, Tang Y. Surface Modification Techniques of Titanium and its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review. Front Bioeng Biotechnol 2020; 8:603072. [PMID: 33262980 PMCID: PMC7686851 DOI: 10.3389/fbioe.2020.603072] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 11/25/2022] Open
Abstract
Depending on the requirements of specific applications, implanted materials including metals, ceramics, and polymers have been used in various disciplines of medicine. Titanium and its alloys as implant materials play a critical role in the orthopedic and dental procedures. However, they still require the utilization of surface modification technologies to not only achieve the robust osteointegration but also to increase the antibacterial properties, which can avoid the implant-related infections. This article aims to provide a summary of the latest advances in surface modification techniques, of titanium and its alloys, specifically in biomedical applications. These surface techniques include plasma spray, physical vapor deposition, sol-gel, micro-arc oxidation, etc. Moreover, the microstructure evolution is comprehensively discussed, which is followed by enhanced mechanical properties, osseointegration, antibacterial properties, and clinical outcomes. Future researches should focus on the combination of multiple methods or improving the structure and composition of the composite coating to further enhance the coating performance.
Collapse
Affiliation(s)
- Tong Xue
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Song
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Lanjie Li
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Beibei Zhao
- Chengsteel Group Co., Ltd., HBIS Group Co., Ltd., Chengde, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
You JB, Lee B, Choi Y, Lee CS, Peter M, Im SG, Lee SS. Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device. Biotechniques 2020; 69:404-409. [PMID: 32372656 DOI: 10.2144/btn-2020-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Poly(dimethylsiloxane) (PDMS) is widely used as a microfluidics platform material; however, it absorbs various molecules, perturbing specific chemical concentrations in microfluidic channels. We present a simple solution to prevent adsorption into a PDMS microfluidic device. We used a vapor-phase-deposited nanoadhesive layer to seal PDMS microfluidic channels. Absorption of fluorescent molecules into PDMS was efficiently prevented in the nanolayer-treated PDMS device. Importantly, when cultured in a nanolayer-treated PDMS device, yeast cells exhibited the expected concentration-dependent response to a mating pheromone, including mating-specific morphological and gene expression changes, while yeast cultured in an untreated PDMS device did not properly respond to the pheromone. Our method greatly expands microfluidic applications that require precise control of molecule concentrations.
Collapse
Affiliation(s)
- Jae Bem You
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Byungjin Lee
- Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yunho Choi
- Department of Chemical & Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Matthias Peter
- Institute for Biochemistry, ETH Zürich, Zürich, CH 8093, Switzerland
| | - Sung Gap Im
- Department of Chemical & Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sung Sik Lee
- Institute for Biochemistry, ETH Zürich, Zürich, CH 8093, Switzerland.,Scientific Center for Optical & Electron Microscopy (ScopeM), ETH Zürich, Zürich, CH 8093, Switzerland
| |
Collapse
|
7
|
Burk MH, Schröder S, Moormann W, Langbehn D, Strunskus T, Rehders S, Herges R, Faupel F. Fabrication of Diazocine-Based Photochromic Organic Thin Films via Initiated Chemical Vapor Deposition. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian H. Burk
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Stefan Schröder
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Widukind Moormann
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Daniel Langbehn
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Thomas Strunskus
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Stefan Rehders
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Franz Faupel
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
8
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
9
|
Liu Y, Rath B, Tingart M, Eschweiler J. Role of implants surface modification in osseointegration: A systematic review. J Biomed Mater Res A 2019; 108:470-484. [DOI: 10.1002/jbm.a.36829] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Liu
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Björn Rath
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery RWTH Aachen University Clinic Aachen Germany
| |
Collapse
|
10
|
Yılmaz K, Şakalak H, Gürsoy M, Karaman M. Initiated Chemical Vapor Deposition of Poly(Ethylhexyl Acrylate) Films in a Large-Scale Batch Reactor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kurtuluş Yılmaz
- Chemical Engineering Department, Konya Technical University, Konya 42030, Turkey
| | - Hüseyin Şakalak
- Advanced Materials and Nanotechnology Department, Selcuk University, Konya 42075, Turkey
| | - Mehmet Gürsoy
- Chemical Engineering Department, Konya Technical University, Konya 42030, Turkey
| | - Mustafa Karaman
- Chemical Engineering Department, Konya Technical University, Konya 42030, Turkey
| |
Collapse
|
11
|
Youn YH, Lee SJ, Choi GR, Lee HR, Lee D, Heo DN, Kim BS, Bang JB, Hwang YS, Correlo VM, Reis RL, Im SG, Kwon IK. Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:949-958. [PMID: 30948131 DOI: 10.1016/j.msec.2019.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
Over the past few decades, titanium (Ti) implants have been widely used to repair fractured bones. To promote osteogenesis, immobilization of osteoinductive agents, such as recombinant human bone morphogenic protein-2 (rhBMP2), onto the Ti surface is required. In this study, we prepared rhBMP2 immobilized on glycidyl methacrylate (GMA) deposited Ti surface through initiated chemical vapor deposition (iCVD) technique. After preparation, the bio-functionalized Ti surface was characterized by physicochemical analysis. For in vitro analysis, the developed Ti was evaluated by cell proliferation, alkaline phosphatase activity, calcium deposition, and real-time polymerase chain reaction to verify their osteogenic activity against human adipose-derived stem cells (hASCs). The GMA deposited Ti surface was found to effectively immobilize a large dose of rhBMP2 as compared to untreated Ti. Additionally, rhBMP2 immobilized on Ti showed significantly enhanced osteogenic differentiation and increased calcium deposition with nontoxic cell viability. These results clearly confirm that our strategy may provide a simple, solvent-free strategy to prepare an osteoinductive Ti surface for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yun Hee Youn
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Go Ro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hak Rae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Donghyun Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Beum Bang
- Department of Dental Education, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal; Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
12
|
Götz W, Tobiasch E, Witzleben S, Schulze M. Effects of Silicon Compounds on Biomineralization, Osteogenesis, and Hard Tissue Formation. Pharmaceutics 2019; 11:E117. [PMID: 30871062 PMCID: PMC6471146 DOI: 10.3390/pharmaceutics11030117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.
Collapse
Affiliation(s)
- Werner Götz
- Department of Orthodontics, Oral Biology Laboratory, School of Dentistry, Rheinische Wilhelms University of Bonn, Welschnonnenstr. 17, D-53111 Bonn, Germany.
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany.
| |
Collapse
|
13
|
Sun Q, Yang Y, Luo W, Zhao J, Zhou Y. The Influence of Electrolytic Concentration on the Electrochemical Deposition of Calcium Phosphate Coating on a Direct Laser Metal Forming Surface. Int J Anal Chem 2017; 2017:8610858. [PMID: 28250771 PMCID: PMC5303588 DOI: 10.1155/2017/8610858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
A calcium phosphate (CaP) coating on titanium surface enhances its biocompatibility, thus facilitating osteoconduction and osteoinduction with the inorganic phase of the human bone. Electrochemical deposition has been suggested as an effective means of fabricating CaP coatings on porous surface. The purpose of this study was to develop CaP coatings on a direct laser metal forming implant using electrochemical deposition and to investigate the effect of electrolytic concentration on the coating's morphology and structure by X-ray diffraction, scanning electron microscopy, water contact angle analysis, and Fourier transform infrared spectroscopy. In group 10-2, coatings were rich in dicalcium phosphate, characterized to be thick, layered, and disordered plates. In contrast, in groups 10-3 and 10-4, the relatively thin and well-ordered coatings predominantly consisted of granular hydroxyapatite. Further, the hydrophilicity and cell affinity were improved as electrolytic concentration increased. In particular, the cells cultured in group 10-3 appeared to have spindle morphology with thick pseudopodia on CaP coatings; these spindles and pseudopodia strongly adhered to the rough and porous surface. By analyzing and evaluating the surface properties, we provided further knowledge on the electrolytic concentration effect, which will be critical for improving CaP coated Ti implants in the future.
Collapse
Affiliation(s)
- Qianyue Sun
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Yuhui Yang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Wenjing Luo
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin Province 130021, China
| |
Collapse
|
14
|
Cavoue T, Bounou Abassi H, Vayssade M, Nguyen Van Nhien A, Kang IK, Kwon GW, Pourceau G, Dubot P, Abbad Andaloussi S, Versace DL. Imidazolium-based titanium substrates against bacterial colonization. Biomater Sci 2017; 5:561-569. [DOI: 10.1039/c6bm00715e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photografting of a silane-derived imidazole compound on titanium substrates against bacterial colonization.
Collapse
|
15
|
Mazaheri M, Eslahi N, Ordikhani F, Tamjid E, Simchi A. Nanomedicine applications in orthopedic medicine: state of the art. Int J Nanomedicine 2015; 10:6039-53. [PMID: 26451110 PMCID: PMC4592034 DOI: 10.2147/ijn.s73737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions and challenges.
Collapse
Affiliation(s)
- Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Niloofar Eslahi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Farideh Ordikhani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran ; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
16
|
Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. J Colloid Interface Sci 2015; 460:189-99. [PMID: 26319336 DOI: 10.1016/j.jcis.2015.08.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/22/2015] [Indexed: 01/19/2023]
Abstract
Drug-eluting stents (DESs) have been used to treat coronary artery diseases by placing in the arteries. However, current DESs still suffer from polymer coating defects such as delamination and peeling-off that follows stent deployment. Such coating defects could increase the roughness of DES and might act as a source of late or very late thrombosis and might increase the incident of restenosis. In this regard, we modified the cobalt-chromium (Co-Cr) alloy surface with hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) or hydrophobic poly(2-hydroxyethyl methacrylate)-grafted-poly(caprolactone) (PHEMA-g-PCL) brushes. The resulting surfaces were biocompatible and biodegradable, which could act as anchoring layer for the drug-in-polymer matrix coating. The two modifications were characterized by ATR-FTIR, XPS, water contact angle measurements, SEM and AFM. On the control and modified Co-Cr samples, a sirolimus (SRL)-containing poly(D,L-lactide) (PDLLA) were ultrasonically spray-coated, and the drug release was examined for 8weeks under physiological conditions. The results demonstrated that PHEMA as a primer coating improved the coating stability and degradation morphology, and drug release profile for short-term as compared to control Co-Cr, but fails after 7weeks in physiological buffer. On the other hand, the hydrophobic PHEMA-g-PCL brushes not only enhanced the stability and degradation morphology of the PDLLA coating layer, but also sustained SRL release for long-term. At 8-week of release test, the surface morphologies and release profiles of coated PDLLA layers verified the beneficial effect of hydrophobic PCL brushes as well as their thickness on coating stability. Our study concludes that 200nm thickness of PHEMA-g-PCL as interfacial layer affects the stability and degradation morphology of the biodegradable coating intensively to be applied for various biodegradable-based DESs.
Collapse
|
17
|
Lee SJ, Heo DN, Lee HR, Lee D, Yu SJ, Park SA, Ko WK, Park SW, Im SG, Moon JH, Kwon IK. Biofunctionalized titanium with anti-fouling resistance by grafting thermo-responsive polymer brushes for the prevention of peri-implantitis. J Mater Chem B 2015; 3:5161-5165. [DOI: 10.1039/c5tb00611b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last decade, titanium has been effectively used in the dental field for oral surgery as an implant material.
Collapse
|