1
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
2
|
Yadav TC, Bachhuka A. Tuning foreign body response with tailor-engineered nanoscale surface modifications: fundamentals to clinical applications. J Mater Chem B 2023; 11:7834-7854. [PMID: 37528807 DOI: 10.1039/d3tb01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Biomaterials are omnipresent in today's healthcare services and are employed in various applications, including implants, sensors, healthcare accessories, and drug delivery systems. Unfavorable host immunological responses frequently jeopardize the efficacy of biomaterials. As a result, surface modification has received much attention in controlling inflammatory responses since it helps camouflage the biomaterial from the host immune system, influencing the foreign body response (FBR) from protein adsorption to fibrous capsule formation. Surfaces with controlled nanotopography and chemistry, among other surface modification methodologies, have effectively altered the immune response to biomaterials. However, the field is still in its early stages, with only a few studies showing a synergistic effect of surface chemistry and nanotopography on inflammatory and wound healing pathways. Therefore, this review will concentrate on the individual and synergistic effects of surface chemistry and nanotopography on FBR modulation and the molecular processes known to modulate these responses. This review will also provide insights into crucial research gaps and advancements in various tactics for modulating FBR, opening new paths for future research. This will further aid in improving our understanding of the immune response to biomaterials, developing advanced surface modification techniques, designing immunomodulatory biomaterials, and translating discoveries into clinical applications.
Collapse
Affiliation(s)
- Tara Chand Yadav
- Department of Bioinformatics, Faculty of Engineering & Technology, Marwadi University, Gujarat, 360003, India
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| | - Akash Bachhuka
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain.
| |
Collapse
|
3
|
Quek JY, Bright R, Dabare P, Vasilev K. ROS-responsive copolymer micelles for inflammation triggered delivery of ibuprofen. Colloids Surf B Biointerfaces 2022; 217:112590. [PMID: 35660744 DOI: 10.1016/j.colsurfb.2022.112590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for the treatment of pain, inflammation and fever. However, most NSAIDs are poorly water soluble, making it difficult to be administered thus high doses are required to reach the intended therapeutic effect, resulting in associated side effects. In this study, ROS-responsive micellar systems based on a block copolymer consisting of methylpropyl thioether (MTPA) and N'N-dimethylacrylamide was developed and loaded with ibuprofen (IBU). Using lipopolysaccharide activated RAW 264.7 macrophage like cells, we demonstrated that IBU was released from the copolymer, specifically in the presence of ROS. Interestingly, IBU encapsulated in ROS-responsive nanoparticles exhibited greater anti-inflammatory potency compared to its free form. The work highlights the potential of the ROS-responsive micellar system developed in this work to be used as carrier of NSAIDs for the treatment of relevant inflammatory conditions.
Collapse
Affiliation(s)
- Jing Yang Quek
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | - Richard Bright
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Prl Dabare
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia; College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Krasimir Vasilev
- UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia; College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
4
|
Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses. NANOMATERIALS 2022; 12:nano12040682. [PMID: 35215013 PMCID: PMC8879273 DOI: 10.3390/nano12040682] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
Abstract
Nanoparticles are widely used for biomedical applications such as vaccine, drug delivery, diagnostics, and therapeutics. This study aims to reveal the influence of nanoparticle surface functionalization on protein corona formation from blood serum and plasma and the subsequent effects on the innate immune cellular responses. To achieve this goal, the surface chemistry of silica nanoparticles of 20 nm diameter was tailored via plasma polymerization with amine, carboxylic acid, oxazolines, and alkane functionalities. The results of this study show significant surface chemistry-induced differences in protein corona composition, which reflect in the subsequent inflammatory consequences. Nanoparticles rich with carboxylic acid surface functionalities increased the production of pro-inflammatory cytokines in response to higher level of complement proteins and decreased the number of lipoproteins found in their protein coronas. On another hand, amine rich coatings led to increased expressions of anti-inflammatory markers such as arginase. The findings demonstrate the potential to direct physiological responses to nanomaterials via tailoring their surface chemical composition.
Collapse
|
5
|
To be a radical or not to be one? The fate of the stable nitroxide radical TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] undergoing plasma polymerization into thin-film coatings. Biointerphases 2020; 15:031015. [PMID: 32590900 DOI: 10.1116/6.0000259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stable nitroxide radical TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] has a multitude of applications in fields ranging from energy storage to biomedical applications and many more. However, to date, the processes of incorporating nitroxide radicals into thin-film coatings are laborious and not cost-effective, which hinders their wider use in many applications. In contrast, the authors have recently demonstrated the facile method of plasma polymerization of TEMPO into thin-film coatings that retain the stable nitroxide radicals. In this work, we are using three types of mass spectroscopic methods (plasma-mass spectrometry, time of flight secondary ion mass spectrometry, and high-performance liquid chromatography-mass spectrometry) and electron spin resonance to track the fate of the TEMPO molecule from monomer flask through the plasma and inside the resulting coatings. The results of this study demonstrate that TEMPO is a versatile monomer that can be used across different plasma reactors and reliably retain the stable nitroxide radical in the resulting thin-film coatings if certain process conditions are observed, namely, higher process pressures and lower powers.
Collapse
|
6
|
Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hybrid microparticles based on an iron core and an amphiphilic polymeric shell have been prepared to respond simultaneously to magnetic and ultrasonic fields and variation in the surrounding pH to trigger and modulate the delivery of doxorubicin. The microparticles have been developed in four steps: (i) synthesis of the iron core; (ii) surface modification of the core; (iii) conjugation with the amphiphilic poly(lactic acid)-grafted chitosan; and (iv) doxorubicin loading. The particles demonstrate spherical shape, a size in the range of 1–3 µm and surface charge that is tuneable by changing the pH of the environment. The microparticles demonstrate good stability in simulated physiological solutions and are able to hold up to 400 µg of doxorubicin per mg of dried particles. The response to ultrasound and the changes in the shell structure during exposure to different pH levels allows the control of the burst intensity and release rate of the payload. Additionally, the magnetic response of the iron core is preserved despite the polymer coat. In vitro cytotoxicity tests performed on fibroblast NIH/3T3 demonstrate a reduction in the cell viability after administration of doxorubicin-loaded microparticles compared to the administration of free doxorubicin. The application of ultrasound causes a burst in the release of the doxorubicin from the carrier, causing a decrease in cell viability. The microparticles demonstrate in vitro cytocompatibility and hemocompatibility at concentrations of up to 50 and 60 µg/mL, respectively.
Collapse
|
7
|
Bachhuka A, Madathiparambil Visalakshan R, Law CS, Santos A, Ebendorff-Heidepriem H, Karnati S, Vasilev K. Modulation of Macrophages Differentiation by Nanoscale-Engineered Geometric and Chemical Features. ACS APPLIED BIO MATERIALS 2020; 3:1496-1505. [DOI: 10.1021/acsabm.9b01125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Bachhuka
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - R. Madathiparambil Visalakshan
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - C. S. Law
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Chemical Engineering, University of Adelaide, Engineering North Building, Adelaide, South Australia 5005, Australia
| | - A. Santos
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Chemical Engineering, University of Adelaide, Engineering North Building, Adelaide, South Australia 5005, Australia
| | - H. Ebendorff-Heidepriem
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - S. Karnati
- Institute for Anatomy and Cell Biology, Julius Maximilians University, Koellikerstrasse 6, Wuerzburg 97070, Germany
| | - K. Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
- School of Engineering, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| |
Collapse
|
8
|
Zuber A, Bachhuka A, Tassios S, Tiddy C, Vasilev K, Ebendorff-Heidepriem H. Field Deployable Method for Gold Detection Using Gold Pre-Concentration on Functionalized Surfaces. SENSORS (BASEL, SWITZERLAND) 2020; 20:E492. [PMID: 31952298 PMCID: PMC7014198 DOI: 10.3390/s20020492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 11/17/2022]
Abstract
Keywords: surface chemistry, plasma polymerization, salinization, gold sensing.
Collapse
Affiliation(s)
- Agnieszka Zuber
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia;
- Deep Exploration Technologies Cooperative Research Centre, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.T.); (C.T.)
| | - Akash Bachhuka
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia;
- Deep Exploration Technologies Cooperative Research Centre, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.T.); (C.T.)
- ARC Center of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide 5005, Australia
| | - Steven Tassios
- Deep Exploration Technologies Cooperative Research Centre, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.T.); (C.T.)
- CSIRO, Process Science and Engineering, Gate 1, Normanby Road, Clayton 3169, Australia
| | - Caroline Tiddy
- Deep Exploration Technologies Cooperative Research Centre, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.T.); (C.T.)
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia;
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia;
- School of Engineering, University of South Australia, Mawson Lakes 5095, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia;
- Deep Exploration Technologies Cooperative Research Centre, School of Physical Sciences, The University of Adelaide, Adelaide 5005, Australia; (S.T.); (C.T.)
- ARC Center of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
9
|
Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:51-57. [DOI: 10.1016/j.msec.2018.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/15/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023]
|
10
|
Michl TD, Jung D, Pertoldi A, Schulte A, Mocny P, Klok HA, Schönherr H, Giles C, Griesser HJ, Coad BR. An Acid Test: Facile SI-ARGET-ATRP of Methacrylic Acid. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas D. Michl
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Dimitri Jung
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Andrea Pertoldi
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Anna Schulte
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Piotr Mocny
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Carla Giles
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Hans J. Griesser
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Bryan R. Coad
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
- School of Agriculture, Food & Wine; Food and Wine; University of Adelaide; SA 5005 Adelaide Australia
| |
Collapse
|
11
|
Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. NANOSCALE 2017; 9:18129-18152. [PMID: 29143002 DOI: 10.1039/c7nr05913b] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immune cells play vital roles in regulating bone dynamics. Successful bone regeneration requires a favourable osteo-immune environment. The high plasticity and diversity of immune cells make it possible to manipulate the osteo-immune response of immune cells, thus modulating the osteoimmune environment and regulating bone regeneration. With the advancement in nanotechnology, nanotopographies with different controlled surface properties can be fabricated. On tuning the surface properties, the osteo-immune response can be precisely modulated. This highly tunable characteristic and immunomodulatory effects make nanotopography a promising strategy to precisely manipulate osteoimmunomdulation for bone tissue engineering applications. This review first summarises the effects of the immune response during bone healing to show the importance of regulating the immune response for the bone response. The plasticity of immune cells is then reviewed to provide rationales for manipulation of the osteoimmune response. Subsequently, we highlight the current types of nanotopographies applied in bone biomaterials and their fabrication techniques, and explain how these nanotopographies modulate the immune response and the possible underlying mechanisms. The effects of immune cells on nanotopography-mediated osteogenesis are emphasized, and we propose the concept of "nano-osteoimmunomodulation" to provide a valuable strategy for the development of nanotopographies with osteoimmunomodulatory properties that can precisely regulate bone dynamics.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Solovieva AY, Ioni YV, Baskakov AO, Starchikov SS, Avilov AS, Lyubutin IS, Gubin SP. Synthesis of Fe3O4@Au core–shell nanoparticles. RUSS J INORG CHEM+ 2017. [DOI: 10.1134/s0036023617060225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Bachhuka A, Hayball JD, Smith LE, Vasilev K. The Interplay between Surface Nanotopography and Chemistry Modulates Collagen I and III Deposition by Human Dermal Fibroblasts. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5874-5884. [PMID: 28156094 DOI: 10.1021/acsami.6b15932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The events within the foreign body response are similar to, but ultimately different than, the wound healing cascade. Collagen production by fibroblasts is known to play a vital role in wound healing and device fibrous encapsulation. However, the influence of surface nanotopography on collagen deposition by these cells has not been reported so far. To address this gap, we have developed model substrata having surface nanotopography of controlled height of 16, 38, and 68 nm and tailored outermost surface chemistry of amines, carboxyl acid, and pure hydrocarbon. Fibroblast adhesion was reduced on nanotopographically modified surfaces compared to the smooth control. Furthermore, amine and acid functionalized surfaces showed increased cell proliferation over hydrophobic hydrocarbon surfaces. Collagen III production increased from day 3 to day 8 and then decreased from day 8 to day 16 on all surfaces, while collagen I deposition increased throughout the duration of 16 days. Our data show that the initial collagen I and III deposition can be modulated by selecting desired combinations of surface nanotopography and chemistry. This study provides useful knowledge that could help in tuning fibrous capsule formation and in turn govern the fate of implantable biomaterial devices.
Collapse
Affiliation(s)
- Akash Bachhuka
- ARC Centre of Excellence for Nanoscale Biophotonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide , Adelaide, SA 5005, Australia
| | - John Dominic Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia , Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
14
|
Bachhuka A, Hayball J, Smith LE, Vasilev K. Effect of Surface Chemical Functionalities on Collagen Deposition by Primary Human Dermal Fibroblasts. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23767-23775. [PMID: 26457649 DOI: 10.1021/acsami.5b08249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface modification has been identified as an important technique that could improve the response of the body to implanted medical devices. Collagen production by fibroblasts is known to play a vital role in wound healing and device fibrous encapsulation. However, how surface chemistry affects collagen I and III deposition by these cells has not been systematically studied. Here, we report how surface chemistry influences the deposition of collagen I and III by primary human dermal fibroblasts. Amine (NH3), carboxyl acid (COOH), and hydrocarbon (CH3) surfaces were generated by plasma deposition. This is a practically relevant tool to deposit a functional coating on any type of substrate material. We show that fibroblasts adhere better and proliferate faster on amine-rich surfaces. In addition, the initial collagen I and III production is greater on this type of coating. These data indicates that surface modification can be a promising route for modulating the rate and level of fibrous encapsulation and may be useful in informing the design of implantable biomedical devices to produce more predictable clinical outcomes.
Collapse
Affiliation(s)
| | - John Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia , Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|