1
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
2
|
Khan FU, Mehmood S, Liu S, Xu W, Shah MN, Zhao X, Ma J, Yang Y, Pan X. A p-n Heterojunction Based Pd/PdO@ZnO Organic Frameworks for High-Sensitivity Room-Temperature Formaldehyde Gas Sensor. Front Chem 2021; 9:742488. [PMID: 34616714 PMCID: PMC8489732 DOI: 10.3389/fchem.2021.742488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
As formaldehyde is an extremely toxic volatile organic pollutant, a highly sensitive and selective gas sensor for low-concentration formaldehyde monitoring is of great importance. Herein, metal-organic framework (MOF) derived Pd/PdO@ZnO porous nanostructures were synthesized through hydrothermal method followed by calcination processes. Specifically, porous Pd/PdO@ZnO nanomaterials with large surfaces were synthesized using MOFs as sacrificial templates. During the calcination procedure, an optimized temperature of 500°C was used to form a stable structure. More importantly, intensive PdO@ZnO inside the material and composite interface provides lots of p-n heterojunction to efficiently manipulate room temperature sensing performance. As the height of the energy barrier at the junction of PdO@ZnO exponentially influences the sensor resistance, the Pd/PdO@ZnO nanomaterials exhibit high sensitivity (38.57% for 100 ppm) at room temperature for 1-ppm formaldehyde with satisfactory selectivity towards (ammonia, acetone, methanol, and IPA). Besides, due to the catalytic effect of Pd and PdO, the adsorption and desorption of the gas molecules are accelerated, and the response and recovery time is as small as 256 and 264 s, respectively. Therefore, this MOF-driven strategy can prepare metal oxide composites with high surface area, well-defined morphology, and satisfactory room-temperature formaldehyde gas sensing performance for indoor air quality control.
Collapse
Affiliation(s)
- Faheem Ullah Khan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Shahid Mehmood
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Shiliang Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Wei Xu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Muhammad Naeem Shah
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiaojin Zhao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yatao Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Xiaofang Pan
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Wang D, Yang J, Bao L, Cheng Y, Tian L, Ma Q, Xu J, Li HJ, Wang X. Pd nanocrystal sensitization two-dimension porous TiO 2 for instantaneous and high efficient H 2 detection. J Colloid Interface Sci 2021; 597:29-38. [PMID: 33862445 DOI: 10.1016/j.jcis.2021.03.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022]
Abstract
Hydrogen (H2) molecules are easy to leak during production, storage, transportation and usage. Because of their flammability and explosive nature, quick and reliable dectection of H2 molecule is of great significance. Herein, an excellent H2 gas sensor has been realized based on Pd nanocrystal sensitized two-dimensional (2D) porous TiO2 (Pd/TiO2). The formation of 2D porous TiO2 with the removal of graphene oxide template has been monitored by an in-situ transmission electron microscope. It is found that the size of the GO template can be almost completely replicated by 2D TiO2. The Pd/TiO2 sensor exhibited an instantaneous response and a satisfactory low detection limit for H2 detection. These excellent gas-sensing performances (good selectivity, unique linearity response and high stability) can be attributed to the unique 2D porous structure and the synergistic effect between oxidized Pd and TiO2, including the unique adsorption properties of O2 or/and H2 on Pd/TiO2, the reaction between PdO and H2 gas, and the regulated depletion layer arising from p-type PdO to n-type TiO2. This work demonstrates a rational design and synthesis of highly efficient H2 sensitive materials for energy and manufacturing security.
Collapse
Affiliation(s)
- Ding Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jialin Yang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Bao
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Cheng
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liang Tian
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingxiang Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jingcheng Xu
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui-Jun Li
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xianying Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Mhlongo GH, Motaung DE, Cummings FR, Swart HC, Ray SS. A highly responsive NH 3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Sci Rep 2019; 9:9881. [PMID: 31285474 PMCID: PMC6614408 DOI: 10.1038/s41598-019-46247-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/24/2019] [Indexed: 12/01/2022] Open
Abstract
The gas-detecting ability of nanostructured ZnO has led to significant attention being paid to the development of a unique and effective approach to its synthesis. However, its poor sensitivity, cross-sensitivity to humidity, long response/recovery times and poor selectivity hinder its practical use in environmental and health monitoring. In this context, the addition of noble metals, as dopants or catalysts to modify the ZnO surface has been examined to enhance its sensing performance. Herein, we report preparation of Pd-loaded ZnO nanoparticles via a chemical precipitation approach. Various Pd loadings were employed to produce surface-modified ZnO nanostructure sensors, and their resulting NH3 sensing capabilities both in dry and humid environments were investigated. Through a comparative gas sensing study between the pure and Pd-loaded ZnO sensors upon exposure to NH3 at an optimal operating temperature of 350 °C, the Pd-loaded ZnO sensors were found to exhibit enhanced sensor responses and fast response/recovery times. The influence of Pd loading and its successful incorporation into ZnO nanostructure was examined by X-ray diffraction, high resolution-transmission electron microscopy, and X-ray photoelectron spectroscopy. XPS studies demonstrated that in all samples, Pd existed in two chemical states, namely Pd° and Pd2+. The possible sensing mechanism related to NH3 gas is also discussed in detail.
Collapse
Affiliation(s)
- G H Mhlongo
- DST-CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa. .,Department of Physics, University of the Free State, Bloemfontein, ZA9300, South Africa.
| | - D E Motaung
- DST-CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Physics, University of the Free State, Bloemfontein, ZA9300, South Africa
| | - F R Cummings
- Electron Microscope Unit, University of the Western Cape, Bellville, 7535, South Africa
| | - H C Swart
- Department of Physics, University of the Free State, Bloemfontein, ZA9300, South Africa
| | - S S Ray
- DST-CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Applied Chemistry, University of Johannesburg, Doornfontein, 2028, Johanneburg, South Africa
| |
Collapse
|