1
|
Ishii K, Ogata G, Yamamoto T, Sun S, Shiigi H, Einaga Y. Designing Molecularly Imprinted Polymer-Modified Boron-Doped Diamond Electrodes for Highly Selective Electrochemical Drug Sensors. ACS Sens 2024; 9:1611-1619. [PMID: 38471116 DOI: 10.1021/acssensors.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Drug detection in biological solutions is essential in studying the pharmacokinetics of the body. Electrochemical detection is an accurate and rapid method, but measuring multiple drugs that react at similar potentials is challenging. Herein, we developed an electrochemical sensor using a boron-doped diamond (BDD) electrode modified with a molecularly imprinted polymer (MIP) to provide specificity in drug sensing. The MIP is a polymer material designed to recognize and capture template molecules, enabling the selective detection of target molecules. In this study, we selected the anticancer drug doxorubicin (DOX) as the template molecule. In the electrochemical measurements using an unmodified BDD, the DOX reduction was observed at approximately -0.5 V (vs Ag/AgCl). Other drugs, i.e., mitomycin C or clonazepam (CZP), also underwent a reduction reaction at a similar potential to that of DOX, when using the unmodified BDD, which rendered the accurate quantification of DOX in a mixture challenging. Similar measurements conducted in PBS using the MIP-BDD only resulted in a DOX reduction current, with no reduction reaction observed in the presence of mitomycin C and CZP. These results suggest that the MIP, whose template molecule is DOX, inhibits the reduction of other drugs on the electrode surface. Selective DOX measurement using the MIP-BDD was also possible in human plasma, and the respective limits of detection of DOX in PBS and human plasma were 32.10 and 16.61 nM. The MIP-BDD was durable for use in six repeated measurements, and MIP-BDD may be applicable as an electrochemical sensor for application in therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kanako Ishii
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Shuyi Sun
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai 599-8531, Osaka, Japan
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Metropolitan University, 1-1 Gakuen, Naka, Sakai 599-8531, Osaka, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
2
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
3
|
Anti-Biofouling Electrochemical Sensor Based on the Binary Nanocomposite of Silica Nanochannel Array and Graphene for Doxorubicin Detection in Human Serum and Urine Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248640. [PMID: 36557774 PMCID: PMC9786716 DOI: 10.3390/molecules27248640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
A disposable and portable electrochemical sensor was fabricated by integrating vertically-ordered silica mesoporous films (VMSF) and electrochemically reduced graphene (ErGO) on a screen-printed carbon electrode (SPCE). Such VMSF/ErGO/SPCEs could be prepared by a simple and controllable electrochemical method. Stable growth of VMSF on SPCE could be accomplished by the introduction of an adhesive ErGO nanolayer owing to its oxygen-containing groups and two-dimensional (2D) planar structure. An outer VMSF layer acting as a protective coating is able to prevent the leakage of the inner ErGO layer from the SPCE surface. Thanks to the electrostatic permselectivity and anti-fouling capacity of VMSF and to the good electroactive activity of ErGO, binary nanocomposites of VMSF and ErGO endow the SPCE with excellent analytical performance, which could be used to quantitatively detect doxorubicin (DOX) in biological samples (human serum and urine) with high sensitivity, good long-term stability, and low sample amounts.
Collapse
|
4
|
pH-sensitive self-assembled nanofibers based on electrostatic interaction and Schiff base bonding for controlled release of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Fe3O4@Au-rGO Nanocomposite/Ionic Liquid Modified Sensor for Ultrasensitive and Selective Sensing of Doxorubicin. Top Catal 2022. [DOI: 10.1007/s11244-021-01504-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Xie P, Liu P. Chitosan-based DDSs for pH/hypoxia dual-triggered DOX delivery: Facile morphology modulation for higher in vitro cytotoxicity. Carbohydr Polym 2022; 275:118760. [PMID: 34742449 DOI: 10.1016/j.carbpol.2021.118760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
The morphology of the drug delivery systems (DDSs) has been recognized to play an important role in their phagocytosis, cellular interaction and distribution. However, it is a technical challenge to simply prepare the non-spherical nanoscaled DDSs. Here, a facile strategy was developed to fabricate the pH/hypoxia dual-responsive nanowires by adding the maleic acid (MAH) and PEG modified chitosan (PEG-SS-CS-MAH) into aqueous solution of DOX. Compared with the PEG-SS-CS-MAH/DOX nanoparticles (NPs) by adding DOX into the PEG-SS-CS-MAH solution, the PEG-SS-CS-MAH/DOX nanowires (NWs) possessed a higher drug loading capacity of 58% and better pH/hypoxia dual-triggered DOX release performance with higher drug release in the simulated tumor intracellular microenvironment but a much lower premature drug leakage in the simulated normal physiological medium. As a result, higher in vitro anti-tumor efficacy was achieved with the PEG-SS-CS-MAH/DOX NWs, demonstrating their promising potential for tumor chemotherapy.
Collapse
Affiliation(s)
- Pengwei Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Liu H, Li X, Ji M, Wang N, Xu Y, Kong Y, Gou J, Yin T, He H, Zhang Y, Tang X. Two-step fabricating micelle-like nanoparticles of cisplatin with the 'real' long circulation and high bioavailability for cancer therapy. Colloids Surf B Biointerfaces 2021; 210:112225. [PMID: 34861539 DOI: 10.1016/j.colsurfb.2021.112225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Cisplatin is a widely used anticancer drug for various solid tumors. However, the serious adverse effects caused by systemic distribution limit its wide use. In this study, we intend to use biocompatible materials polyethyleneimine (PEI) and poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) (PLG-g-PEG) to construct nanoparticles to enhance the efficacy of cisplatin and reduce its side effects. The micelle-like nanoparticles were fabricated by a simple two-step method, with a core consisting of PEI and cisplatin and a PLG-g-mPEG coating layer. The obtained nanoparticles have a small particle size (41.79 nm) and high drug loading (16.43%). The coated nanoparticles (NP-II) strengthened the structure of PEI and cisplatin complex (NP-I) and slowed the drug release for less than 20% at pH 7.4 PBS in 24 h. Therefore, it could effectively inhibit the binding of free drug and plasma proteins to achieve the long circulation, and the bioavailability could be increased to about 600% and 285% of cisplatin solution and NP-I respectively. Besides, the cellular uptake of NP-II was enhanced in the acidic tumor microenvironment due to the detachment of coating layer and the increase of positive zeta potential of nanoparticles, which was benefit to reduce the side effect of cisplatin to normal cells. In vivo pharmacodynamic experiments also showed that NP-II improved the efficacy and reduced side effects compared to the cisplatin solution. In conclusion, the two-step fabricating micelle-like nanoparticles with the improved therapeutic efficiency and reduced side effects show great potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xiaowen Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Muse Ji
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Na Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Ying Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yihan Kong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
8
|
Acid-sensitive charge-reversal co-assembled polyurethane nanomicelles as drug delivery carriers. Colloids Surf B Biointerfaces 2021; 209:112203. [PMID: 34794067 DOI: 10.1016/j.colsurfb.2021.112203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/23/2022]
Abstract
In order to obtain drug delivery carriers with good stability in blood and high cellular uptake efficiency, carboxyl groups and tertiary amine groups were respectively introduced into polyurethane to synthesize two kinds of amphiphilic polyurethanes with opposite charges (PUC and PUN). Their structures were characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). PUC-PUN co-assembled nanomicelles were prepared by electrostatic interaction between PUC and PUN micelles, which showed acid-sensitive property. When the pH of the solution was decreased from 7.4 to 6.5, PUC-PUN-1 micelles showed negative-to-positive charge-reversal property among these micelles. The results of stability and cell experiments demonstrated that PUC-PUN-1 micelles not only had excellent stability in simulated normal physiological environment but also could obviously enhance the cellular uptake efficiency. PUC-PUN-1 micelles had low cytotoxicity against SGC-7901 and MGC-803 cells, whereas PUC-PUN-1/DOX micelles had higher cytotoxicity compared to pure DOX and PUN-1/DOX micelles. Moreover, the results of in vivo antitumor activity experiments showed that PUC-PUN-1/DOX micelles had better tumor inhibition ability and safety than pure DOX. In addition, the results of in vitro drug release experiments indicated that PUC-PUN-1/DOX micelles had almost no burst release or leakage of drugs in pH 7.4 environment. However, the drug release was accelerated in pH 5.0, which followed Fickian diffusion mechanism.
Collapse
|
9
|
Tinajero-Díaz E, Kimmins SD, García-Carvajal ZY, Martínez de Ilarduya A. Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Borandeh S, Hosseinbeigi H, Abolmaali SS, Monajati M, Tamaddon AM. Steric stabilization of β-cyclodextrin functionalized graphene oxide by host-guest chemistry: A versatile supramolecule for dual-stimuli responsive cellular delivery of doxorubicin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zhang P, Li T, Liu C, Sindi M, Cheng X, Qi S, Liu X, Yan Y, Bao Y, Brand-Saberi B, Yang W, Wang G, Yang X. Nano-sulforaphane attenuates PhIP-induced early abnormal embryonic neuro-development. Ann Anat 2020; 233:151617. [PMID: 33098981 DOI: 10.1016/j.aanat.2020.151617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyrimidine (PhIP), one of the most abundant heterocyclic aromatic amines (HAA) formed by cooking meat at high temperatures, may modify humans and rodents through the metabolic process prior to affecting nervous system development. In humans and rodents may be modified by metabolic processes and then affecting nervous system development. METHODS In this paper, PhIP was used to prepare a chicken embryo model with abnormal embryonic nervous system defects. Sulforaphane (SFN) is a derivative of a glucosinolate, which is abundant in cruciferous vegetables, and can pass through the placental barrier. Moreover, SFN has antioxidant and anti-apoptotic functions and is considered as a bioactive antioxidant with significant neuroprotective effects. Nano-sulforaphane (Nano-SFN, sulforaphane nanoparticles) was prepared by self-assembly using biocompatible, biodegradable methoxy polyethylene glycol 5000-b-polyglutamic acid 10,000 (mPEG5K-PGA10K) as the substrate, to explore the new application of Nano-SFN and its modified compounds as leading compounds in protecting against the abnormal development of the embryonic nervous system. RESULTS The results show that Nano-SFN could protect against PhIP-induced central nervous system (CNS, derived from neural tube) and peripheral nervous system (PNS, derived from neural crest cells, NCCs) defects and neural tube defects (NTDs), and increase the embryo survival rate. CONCLUSIONS This study indicates that Nano-SFN can effectively alleviate the developmental defects of embryonic nervous system induced by PhIP in the microenvironment and has a protective effect on embryonic development. It not only helps with expanding the application of SFN and improving its medicinal value, but also provides a possibility of SFN being developed as a novel drug for neuroprotection.
Collapse
Affiliation(s)
- Ping Zhang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Tingting Li
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Chang Liu
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Mustafa Sindi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Shuangyu Qi
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xinyue Liu
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Yu Yan
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UQ, UK
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Weidong Yang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Samaridou E, Kalamidas N, Santalices I, Crecente-Campo J, Alonso MJ. Tuning the PEG surface density of the PEG-PGA enveloped Octaarginine-peptide Nanocomplexes. Drug Deliv Transl Res 2020; 10:241-258. [PMID: 31646443 DOI: 10.1007/s13346-019-00678-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the main limitations of protein drugs is their restricted capacity to cross biological barriers. We have previously reported nanostructured complexes of insulin and modified octaarginine (C12-r8), enveloped by a polyethyleneglycol-polyglutamic acid (PEG-PGA) protective shell, and showed their capacity to overcome different barriers associated to the oral modality of administration. The objective of this work was to produce the said nanocomplexes with structurally diverse PEG-PGA shells, i.e. with different chain lengths and PEG substitution degrees, and comparatively analyze their PEG surface density and subsequent impact on their interaction with mucus glycoproteins and Caco-2 cells. The new PEG-PGA enveloped C12-r8-insulin nanocomplexes (ENCPs) exhibited a narrow size distribution (average size of 210-239 nm), a neutral surface charge and a 100% insulin association efficiency (final insulin loading of 16.5-29.6% w/w). Proton nuclear magnetic resonance (1H NMR) analysis indicated the possibility to modulate the PEG density on the ENCPs from 6.7 to 44.5 PEG chains per 100 nm2. This increase in the ENCPs PEG surface density resulted in their reduced interaction with mucins in vitro, while their interaction with Caco-2 cells in vitro remained unaltered. Overall, these data indicate the capacity to tune the surface characteristics of the ENCPS in order to maximize the capacity of these nanocarriers to overcome barriers associated to mucosal surfaces.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases, 15782, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS research Institute, 15706, Santiago de Compostela, Spain
| | - Nikolaos Kalamidas
- Center for Research in Molecular Medicine and Chronic Diseases, 15782, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS research Institute, 15706, Santiago de Compostela, Spain
| | - Irene Santalices
- Center for Research in Molecular Medicine and Chronic Diseases, 15782, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS research Institute, 15706, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases, 15782, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS research Institute, 15706, Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases, 15782, Santiago de Compostela, Spain. .,Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), IDIS research Institute, 15706, Santiago de Compostela, Spain. .,Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Li B, Pang S, Li X, Li Y. PH and redox dual-responsive polymeric micelles with charge conversion for paclitaxel delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2078-2093. [PMID: 32643545 DOI: 10.1080/09205063.2020.1793708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we demonstrate a type of pH and redox dual-responsive micelles, which were self-assembled in aqueous solution by an amphiphilic polymer, methoxypoly(ethylene glycol)-cystamine-poly(L-glutamic acid)-imidazole (mPEG-SS-PGA-IM). Considering tumor cells or tissues exhibiting low pH values and high glutathione (GSH) concentration, mPEG-SS-PGA-IM micelles possessed the charge conversion at pH of tumor tissues, which can facilitate cellular uptake of tumor cells. Furthermore, mPEG-SS-PGA-IM micelles can escape from endo/lysosomes based on the proton sponge effect, following degraded by higher concentration of GSH in cytoplasm. CLSM images of HCT116 cells indicated that mPEG-SS-PGA-IM micelles can escape from endo/lysosomes and enter cytoplasm. MTT assay showed that (paclitaxel) PTX-loaded mPEG-SS-PGA-IM micelles had higher cytotoxicity against HCT116 cells compared with PTX-loaded mPEG-PBLG and mPEG-SS-PBLG micelles. These results indicated that these mPEG-SS-PGA-IM micelles, as novel and effective pH- and redox-responsive nanocarriers, have great potential to both improve drug targeting efficiency while also enhancing the antitumor efficacy of PTX.
Collapse
Affiliation(s)
- Bo Li
- Binzhou People's Hospital, Binzhou, China
| | | | - Xinxin Li
- Binzhou People's Hospital, Binzhou, China
| | - Yanhai Li
- Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
14
|
Construction of a sensitive electrochemical sensor based on 1T-MoS 2 nanosheets decorated with shape-controlled gold nanostructures for the voltammetric determination of doxorubicin. Mikrochim Acta 2020; 187:223. [PMID: 32166596 DOI: 10.1007/s00604-020-4206-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/02/2020] [Indexed: 01/28/2023]
Abstract
An innovative and portable design to fabricate an electrochemical sensor based on metallic phase MoS2 (1T-MoS2) decorated with shape-dependent gold nanostructures for the determination of doxorubicin (DOX) is presented. In this context, homogenous and uniform single-crystal gold nanospheres (AuNSPs) and nanorods (AuNRDs) were firstly synthesized by seeded growth approach. Afterwards, AuNSPs and AuNRDs were anchored on 1T-MoS2 surfaces to construct the desired electrochemical sensing platform towards the DOX assay. 1T-MoS2 was exfoliated by metal intercalation process using NaK metal alloys. The structure and surface morphology of 1T-MoS2, AuNSPs, and AuNRDs were characterized by XPS, Raman, UV-vis, TEM, and SEM. The electrochemical behavior of DOX using various MoS2-based electrochemical sensors prepared on screen-printed electrode (SPE) was examined by cyclic voltammetry and adsorptive stripping differential pulse voltammetry. The electrocatalytic efficiency of AuNRDs on 1T-MoS2 was also compared with that of AuNSPs on 1T-MoS2, and it showed much better electrocatalytic activity towards the DOX. A nanocomposite prepared with AuNRDs and 1T-MoS2 on SPE (AuNRDs/1T-MoS2/SPE) exhibited a linear relationship between peak current and DOX concentration in the range 0.01-9.5 μM with a detection limit of 2.5 nM. The AuNRDs/1T-MoS2/SPE was successfully applied to the sensitive and rapid determination of DOX in spiked human serum samples with satisfactory recoveries in the range 99.2-100.8%. Graphical abstract Schematic representation of a portable design for electrochemical sensor based on shape-controlled gold nanostructures decorated on metallic phase molybdenum disulfide (1T-MoS2) towards the sensitive determination of doxorubicin.
Collapse
|
15
|
Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm J 2020; 28:255-265. [PMID: 32194326 PMCID: PMC7078546 DOI: 10.1016/j.jsps.2020.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/19/2020] [Indexed: 11/24/2022] Open
Abstract
In the last decade, considerable attention has been devoted to the use of biodegradable polymeric materials as potential drug delivery carriers. However, bioavailability and drug release at the disease site remain uncontrollable even with the use of polymeric nanocarriers. To address this issue, successful methodologies have been developed to synthesize polymeric nanocarriers incorporated with regions exhibiting a response to stimuli such as redox potential, temperature, pH, and light. The resultant stimuli-responsive polymeric nanocarriers have shown tremendous promise in drug delivery applications, owing to their ability to enhance the bioavailability of drugs at the disease site. In such systems, drug release is controlled in response to specific stimuli, either exogenous or endogenous. This review reports recent advances in the design of stimuli-responsive nanocarriers for drug delivery in cancer therapy. In particular, the synthetic methodologies investigated to date to introduce different types of stimuli-responsive elements within the biomaterials are described. The sufficient understanding of these stimuli-responsive nanocarriers will allow the development of a better drug delivery system that will allow us to solve the challenges encountered in targeted cancer therapy.
Collapse
Affiliation(s)
- Mosa Alsehli
- Department of Chemistry, Taibah University, Madina, Saudi Arabia
| |
Collapse
|
16
|
pH-responsive nanoparticles based on optimized synthetic amphiphilic poly(β-amino esters) for doxorubicin delivery. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. J Colloid Interface Sci 2019; 557:458-464. [DOI: 10.1016/j.jcis.2019.09.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/14/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
|
18
|
Lai YL, Cheng YM, Yen SK. Doxorubicin - chitosan - hydroxyapatite composite coatings on titanium alloy for localized cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109953. [PMID: 31500063 DOI: 10.1016/j.msec.2019.109953] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 06/19/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
Abstract
The doxorubicin-chitosan composite is deposited electrochemically on the Ti alloy post hydroxyapatite coated for reducing the side effects by sustaining release of drugs localized near the tumor to achieve the inhibition or apoptosis of cancer. The possibility of danger in case of exfoliation of medicine composite and HA agglomerates from the alloy surface due to the dynamic erosion of blood flow could be overcome with the additional surface modification by the electrochemical deposition way. The cathodic polarization tests coupled with electrochemical reactions were analyzed to speculate the deposition mechanism of doxorubicin, spectrophotometer (UV visible spectrometer) to measure doxorubicin loading and release, field emission scanning electron microscope (FESEM) to observe surface morphology, Fourier transform infrared (FTIR) spectroscopy for chemical bonding of composites, and X-ray diffractometry (XRD) for crystal structure. The cell culture was carried out to analyze the drug efficacy on cell viability. It is concluded that doxorubicin-chitosan composites can be successfully deposited on the uncoated and hydroxyapatite-coated titanium specimen alloy by electrochemical methods. Both have revealed the sustaining drug release for a month and the latter with high porosity can enhance the drug loading to 37.46 μg/cm2, revealing this electrochemical method is a practical way to load doxorubicin cancer drug releasing locally to significantly reduce the amount of medication needed for future clinical applications.
Collapse
Affiliation(s)
- Yu-Liang Lai
- Department of Physical Medicine and Rehabilitation, China Medical University Hsinchu Hospital, No. 199, Section 1, Xinglong Road, Zhubei City, Hsinchu County 302, Taiwan; Department of Physical Therapy and School of Medicine, China Medical University, No. 91, Xueshi Rd., North Dist., Taichung City 404, Taiwan
| | - Yu-Mei Cheng
- Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40227, Taiwan.
| |
Collapse
|
19
|
Nemutlu E, Eroğlu İ, Eroğlu H, Kır S. In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation.Methods:Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample.Results:It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals.Conclusion:This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
20
|
Release of Pharmaceutical Peptides in an Aggregated State: Using Fibrillar Polymorphism to Modulate Release Levels. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traditional approaches to achieve sustained delivery of pharmaceutical peptides traditionally use co-excipients (e.g., microspheres and hydrogels). Here, we investigate the release of an amyloidogenic glucagon analogue (3474) from an aggregated state and the influence of surfactants on this process. The formulation of peptide 3474 in dodecyl maltoside (DDM), rhamnolipid (RL), and sophorolipid (SL) led to faster fibrillation. When the aggregates were subjected to multiple cycles of release by repeated resuspension in fresh buffer, the kinetics of the release of soluble peptide 3474 from different surfactant aggregates all followed a simple exponential decay fit, with half-lives of 5–18 min and relatively constant levels of release in each cycle. However, different amounts of peptide are released from different aggregates, ranging from 0.015 mg/mL (3475-buffer) up to 0.03 mg/mL (3474-DDM), with 3474-buffer and 3474-RL in between. In addition to higher release levels, 3474-DDM aggregates showed a different amyloid FTIR structure, compared to 3474-RL and 3474-SL aggregates and a faster rate of degradation by proteinase K. This demonstrates that the stability of organized peptide aggregates can be modulated to achieve differences in release of soluble peptides, thus coupling aggregate polymorphism to differential release profiles. We achieved aggregate polymorphism by the addition of different surfactants, but polymorphism may also be reached through other approaches, including different excipients as well as changes in pH and salinity, providing a versatile handle to control release profiles.
Collapse
|
21
|
Hao L, Lin L, Zhou J. pH-Responsive Zwitterionic Copolymer DHA-PBLG-PCB for Targeted Drug Delivery: A Computer Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1944-1953. [PMID: 29692174 DOI: 10.1021/acs.langmuir.8b00626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, the self-assembled behaviors of zwitterionic copolymer docosahexaenoic acid- b-poly(γ-benzyl-l-glutamate)- b-poly(carboxybetaine methacrylate) (DHA-PBLG-PCB) and the loading and release mechanism of the anticancer drug doxorubicin (DOX) was investigated via computer simulations. The effects of polymer concentration, drug content, and pH on polymeric micelles were explored by dissipative particle dynamics (DPD) simulations. Simulation results show that DHA-PBLG15-PCB10 can self-assemble into core-shell micelles; in addition, the drug-loaded micelles have a pH-responsive feature. DOX can be encapsulated into the core-shell micelle under normal physiological pH conditions, whereas it can be released under acidic pH conditions. The self-assembled behaviors of copolymer DHA-PBLG-PEG were also studied to have a comparison with those of DHA-PBLG-PCB. The DHA-PBLG15-PCB10 system has a stable structure and it has a great potential to serve as drug delivery vehicles for targeted drug delivery.
Collapse
Affiliation(s)
- Lingxia Hao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Lin Lin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology , South China University of Technology , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
22
|
Muripiti V, Mujahid TY, Boddeda VHV, Tiwari S, Marepally SK, Patri SV, Gopal V. Structure-activity relationship of serotonin derived tocopherol lipids. Int J Pharm 2019; 554:134-148. [PMID: 30389474 DOI: 10.1016/j.ijpharm.2018.10.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
Tocopherol-based lipids are widely used for nucleic acid delivery. Using tocopherol molecules, we designed and synthesized 5-HT functionalized lipids by tethering 5-hydroxytryptamine (5-HT), a small molecule ligand as the head group to a natural amphiphilic molecule namely α-tocopherol (Vitamin E). This is with the aim of delivering nucleic acids specifically into cells expressing the serotonin receptors (5-hydroxytryptamine[5-HT]) which are abundant in the central nervous system. In order to achieve target recognition, we adopted an approach wherein two structurally different lipid molecules having serotonin as the head group was conjugated to tocopherol via different linkers thus generating lipids with either free -NH2 or -OH moiety. The corresponding lipids designated as Lipid A (Tocopheryl carbonate serotonin-NH2) and Lipid B (Tocopheryl 2-hydroxy propyl ammonium serotonin-OH), were formulated with co-lipids 1,2-dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-sn-3-phosphatidylcholine (DOPC) and evaluated for their ability to deliver plasmid DNA through reporter gene expression assays in vitro. Furthermore, the physicochemical characteristics and cellular interactions of the formulations were examined using serotonin-receptor enriched cells in order to distinguish the structural and functional attributes of both lipids. Cell-based gene expression studies reveal that in comparison to Lipid A, a formulation of Lipid B prepared with DOPE as the co-lipid, contributes to efficient uptake leading to significant enhancement in transfection. Specific interactions explored by molecular docking studies suggests the role of the hydroxyl moiety and the enantiospecific significance of serotonin- conjugated tocopherol lipids in recognizing these receptors thus signifying a promising lipid-based approach to target the serotonin receptors in the central nervous system.
Collapse
Affiliation(s)
| | - Thasneem Yoosuf Mujahid
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | | | - Shrish Tiwari
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | - Srujan Kumar Marepally
- Center for Stem Cell Research (CSCR), Christian Medical College Campus, Bagayam, Vellore 632002, TN, India
| | | | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India.
| |
Collapse
|
23
|
Polypeptides Micelles Composed of Methoxy-Poly(Ethylene Glycol)-Poly(l-Glutamic Acid)-Poly(l-Phenylalanine) Triblock Polymer for Sustained Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10040230. [PMID: 30428623 PMCID: PMC6321009 DOI: 10.3390/pharmaceutics10040230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Methoxy-poly(ethylene glycol)-poly(l-glutamic acid)-poly(l-phenylalanine) triblock polymers with different architecture were synthesized as drug carrier to obtain sustained and controlled release by tuning the composition. These triblock polymers were prepared by ring opening polymerization and poly(ethylene glycol) was used as an initiator. Polymerization was confirmed by 1H NMR, FT-IR and gel penetration chromatography. The polymers can self-assemble to form micelles in aqueous medium and their critical micelle concentrations values were examined. The micelles were spherical shape with size of 50–100 nm and especially can arranged in a regular manner. Sorafenib was selected as the model drug and the drug loading performance was dependent on the composition of the block copolymer. In vitro drug release indicated that the polymers can realize controlled and sustained drug release. Furthermore, in vitro cytotoxicity assay showed that the polymers were biocompatible and the drug-loaded micelles can increase toxicity towards tumor cells. Confocal fluorescence microscopy assays illustrated that the micelles can be uptaken quickly and release drug persistently to inhibit tumor cell growth.
Collapse
|
24
|
Huang D, Zhou Y, Xiang Y, Shu M, Chen H, Yang B, Liao X. Polyurethane/doxorubicin nanoparticles based on electrostatic interactions as pH-sensitive drug delivery carriers. POLYM INT 2018. [DOI: 10.1002/pi.5618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dengcheng Huang
- State Key Laboratory of Refractories and Metallurgy; Wuhan University of Science and Technology; Wuhan China
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Material; Wuhan University of Science and Technology; Wuhan China
| | - Yu Zhou
- State Key Laboratory of Refractories and Metallurgy; Wuhan University of Science and Technology; Wuhan China
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Material; Wuhan University of Science and Technology; Wuhan China
| | - Yuan Xiang
- Institute of Biology and Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Meijie Shu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Material; Wuhan University of Science and Technology; Wuhan China
| | - Hongxiang Chen
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Material; Wuhan University of Science and Technology; Wuhan China
| | - Bing Yang
- State Key Laboratory of Refractories and Metallurgy; Wuhan University of Science and Technology; Wuhan China
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Material; Wuhan University of Science and Technology; Wuhan China
| | - Xinghua Liao
- Institute of Biology and Medicine; Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
25
|
Gun'ko V, Krupska T, Andriyko L, Klymenko N, Siora I, Novikova O, Marynin A, Ukrainets A, Charmas B, Shekhunova S, Turov V. Bonding of doxorubicin to nanosilica and human serum albumin in various media. J Colloid Interface Sci 2018; 513:809-819. [DOI: 10.1016/j.jcis.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|
26
|
Hyaluronic acid-based nano-sized drug carrier-containing Gellan gum microspheres as potential multifunctional embolic agent. Sci Rep 2018; 8:731. [PMID: 29335649 PMCID: PMC5768792 DOI: 10.1038/s41598-018-19191-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to develop a gellan gum-based multifunctional embolic agent. Calibrated spherical gellan gum and nanoparticle-containing gellan gum microspheres were prepared via water-in oil emulsification method. Self-assembled nanoparticles composed of short-chain hyaluronic acid and polyethylenimine as the doxorubicin carrier were prepared. The short-chain hyaluronic acid/polyethylenimine/ doxorubicin (sHH/PH/Dox) with the mean size was 140 ± 8 nm. To examine sHH/PH/Dox nanoparticle uptake into cells, the results confirmed that sHH/PH nanoparticles as drug carrier can facilitate the transport of doxorubicin into HepG2 liver cancer cells. Subsequently, sHH/PH/Dox merged into the gellan gum (GG) microspheres forming GG/sHH/PH/Dox microsphere. After a drug release experiment lasting 45 days, the amount of released doxorubicin from 285, 388, and 481 μm GG/sHH/PH/Dox microspheres were approximately 4.8, 1.8 and 1.1-fold above the IC50 value of the HepG2 cell. GG/sHH/PH/Dox microspheres were performed in rabbit ear embolization model and ischemic necrosis on ear was visible due to the vascular after 8 days. Regarding the application of this device in the future, we aim to provide better embolization agents for transcatheter arterial chemoembolization (TACE).
Collapse
|
27
|
Zhao J, Chen H, Tang Y, Chen H, Chen G, Yin Y, Li G. Research progresses on the functional polypeptides in the detection and imaging of breast cancer. J Mater Chem B 2018; 6:2510-2523. [DOI: 10.1039/c7tb02541f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polypeptides as functional groups continue to garner significant interest in the detection and imaging of breast cancer, working as recognition elements, signal sources, building blocks and therapeutic reagents, etc.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Huinan Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yingying Tang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Hong Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Yongmei Yin
- Department of Oncology
- The First Affiliated Hospital of Nanjing Medical University
- Nanjing 210029
- China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
28
|
Mohapatra S, Siddiqui AA, Anwar M, Bhardwaj N, Akhter S, Ahmad FJ. Synthesis and characterization of novel carboxymethyl Assam Bora rice starch for the controlled release of cationic anticancer drug based on electrostatic interactions. AAPS PharmSciTech 2018. [PMID: 28631252 DOI: 10.1208/s12249-017-0824-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Carboxymethyl Assam Bora rice starch (CM-ABRS) was chemically synthesized in non-aqueous medium with the optimum degree of substitution (DS) of 1.23, and physicochemically characterized by FT-IR, DSC, XRD, and SEM analysis. Comparative evaluation of CM-ABRS with native starch (ABRS) for powder flow characteristics, swelling index, apparent solubility, rheological properties, textural properties, and mucoadhesive studies were carried out. The aim of the current work was to investigate the potential of CM-ABRS as a novel carrier for the water-soluble chemotherapeutic, doxorubicin hydrochloride (DOX). Formation of drug/polymer complex (DOX-CM-ABRS) via electrostatic interaction has been evaluated for the controlled release of DOX in three different pH media (phosphate-buffered saline (PBS), pH 7.4, 6.8, and 5.5). In vitro drug release studies illustrated faster release of drug in PBS at pH 5.5 as compared to pH 6.8 and pH 7.4, respectively, indicating the importance of pH-sensitive drug release from the DOX-CM-ABRS complex in malignant tissues.
Collapse
|
29
|
Liu L, Zeng J, Zhao X, Tian K, Liu P. Independent temperature and pH dual-responsive PMAA/PNIPAM microgels as drug delivery system: Effect of swelling behavior of the core and shell materials in fabrication process. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Zhang R, Jia X, Pei M, Liu P. Facile preparation of pH/reduction dual-responsive prodrug microspheres with high drug content for tumor intracellular triggered release of DOX. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Wu S, Zheng L, Li C, Xiao Y, Huo S, Zhang B. Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Shaohua Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
- University of the Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Yaonan Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| | - Shuaidong Huo
- University of the Chinese Academy of Sciences; Beijing 100049 People's Republic of China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beijing 100049 People's Republic of China
| | - Bo Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics; Institute of Chemistry, Chinese Academy of Sciences (ICCAS); Beijing 100190 People's Republic of China
| |
Collapse
|
32
|
A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy. Eur J Med Chem 2017; 127:200-209. [DOI: 10.1016/j.ejmech.2016.12.056] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 11/19/2022]
|
33
|
Zhong H, Xuan L, Wang D, Zhou J, Li Y, Jiang Q. Generation of a co-culture cell micropattern model to simulate lung cancer bone metastasis for anti-cancer drug evaluation. RSC Adv 2017. [DOI: 10.1039/c7ra01868a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A549/OB co-culture micropattern was fabricated through μ-eraser strategy to mimic lung cancer bone metastasis for DOX efficacy evaluation.
Collapse
Affiliation(s)
- Huixiang Zhong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Liuyang Xuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Dandan Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Qing Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
34
|
Sun Y, Du X, He J, Hu J, Zhang M, Ni P. Dual-responsive core-crosslinked polyphosphoester-based nanoparticles for pH/redox-triggered anticancer drug delivery. J Mater Chem B 2017; 5:3771-3782. [DOI: 10.1039/c7tb00440k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The paper focuses on the preparation of biodegradable pH/redox dual-responsive core-crosslinked nanoparticles loaded with dual anticancer drugs PTX and DOX via synergetic electrostatic as well as hydrophobic interactions and their further application in tumor chemotherapy.
Collapse
Affiliation(s)
- Yue Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Xueqiong Du
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Jian Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| |
Collapse
|
35
|
Zhou T, Jia X, Zhao X, Li J, Liu P. Facile preparation of pH/reduction dual-responsive prodrug nanohydrogels for tumor-specific intracellular triggered release with enhanced anticancer efficiency. J Mater Chem B 2017; 5:2840-2848. [DOI: 10.1039/c7tb00433h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile approach was developed for biocompatible and biodegradable pH/reduction dual-responsive nano-prodrug for tumor specific intracellular triggered release.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Xu Jia
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Xubo Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Jiagen Li
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
36
|
Sheng WZ, Chen YS, Tu CT, He J, Zhang B, Gao WD. ANGPTL2 expression in gastric cancer tissues and cells and its biological behavior. World J Gastroenterol 2016; 22:10364-10370. [PMID: 28058016 PMCID: PMC5175248 DOI: 10.3748/wjg.v22.i47.10364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore expression of angiopoietin-like protein 2 (ANGPTL2) and its effect on biological behavior such as proliferation and invasiveness in gastric cancer.
METHODS Western blotting was used to detect expression of ANGPTL2 in 60 human normal gastric tissues, 60 human gastric cancer tissues and gastric cell lines including GES-1, N87, SGC7901, BGC823 and PAMC82. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Transwell assay were used to detect the proliferation and invasive ability of gastric cancer cells.
RESULTS Compared to normal tissues, ANGPTL2 protein levels were significantly upregulated in gastric tissues, and this level was closely correlated with gastric tumor grade, clinical stage and lymph node metastasis. Compared to GES-1 cells, ANGPTL2 mRNA and protein levels were significantly increased in gastric cancer cells including N87, SGC7901, BGC823 and PAMC82. The expression of ANGPTL2 in highly malignant gastric cancer cell lines BGC823 and PAMC82 was significantly higher than in low malignancy gastric cancer cell lines N87 and SGC7901. MTT and Transwell experiments indicated that the proliferation rate and invasive ability of stable overexpressed gastric cancer cells was faster than in cells transfected with Lv-NC and blank control cells, and the invasive ability of stable overexpressed gastric cancer cells was higher than that of cells transfected with Lv-NC and blank control cells.
CONCLUSION ANGPTL2 contributed to proliferation and invasion of gastric cancer cells. In clinical treatment, ANGPTL2 may become a new target for treatment of gastric cancer.
Collapse
|
37
|
Agudelo D, Bérubé G, Tajmir-Riahi H. An overview on the delivery of antitumor drug doxorubicin by carrier proteins. Int J Biol Macromol 2016; 88:354-60. [DOI: 10.1016/j.ijbiomac.2016.03.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
|
38
|
Swiech OA, Opuchlik LJ, Wojciuk G, Stepkowski TM, Kruszewski M, Bilewicz R. Doxorubicin carriers based on Au nanoparticles – effect of shape and gold-drug linker on the carrier toxicity and therapeutic performance. RSC Adv 2016. [DOI: 10.1039/c6ra00177g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles (AuNPs) prepared by the Turkevich method and near-IR absorbing non-spherical anisotropic nanotriangles (AuNTs) prepared by the thiosulfate method were used for doxorubicin binding.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology
- Warsaw
- Poland
- Institute of Rural Health
- Lublin
| | | |
Collapse
|
39
|
Yin S, Chang L, Li T, Wang G, Gu X, Li J. Construction of novel pH-sensitive hybrid micelles for enhanced extracellular stability and rapid intracellular drug release. RSC Adv 2016. [DOI: 10.1039/c6ra23050d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Novel pH-sensitive hybrid micelles with high entrapment efficiency were constructed to realize rapid intracellular drug release without premature release.
Collapse
Affiliation(s)
- Shaoping Yin
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Liang Chang
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Tie Li
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Guangji Wang
- Center of Pharmacokinetics
- Key Laboratory of Drug Metabolism and Pharmacokinetics
- China Pharmaceutical University
- Nanjing
- China
| | - Xiaochen Gu
- College of Pharmacy
- University of Manitoba
- Winnipeg
- Canada R3E 0T5
| | - Juan Li
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|