1
|
Wang J, Zhang M, Liu W, Kong M, Zhan M, Wu X, Wu H, Feng Z, Xu X. Method for Measuring the Three-Dimensional Morphology of Near-Wall Bubbles and Droplets Based on LED Digital Holography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2039-2049. [PMID: 38239095 DOI: 10.1021/acs.langmuir.3c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Digital holography, recognized for its noncontact nature and high precision in three-dimensional imaging, is effectively employed to measure the morphology of bubbles and droplets. However, in terms of near-wall bubbles and droplets, such as confined bubbles in microfluidic chips, the measurement of the interface morphology of bubbles near the glass surface has not yet been resolved due to the coherent noise resulting from glass surface reflections in microfluidic chips. Accordingly, an off-axis digital holography system was devised by using Linnik interferometry. Measuring the confined bubble interface near the wall within a microfluidic chip and droplet evaporation on solid surfaces was studied. Partially coherent LED sources and reference light modulation techniques were employed in the optical setup to mitigate the coherent noise. Dual exposure and weighted least-squares unwrapping algorithms were introduced to correct phase distortions, enhancing image quality. Imaging two confined CO2 bubbles was done near the wall in silicon oil within a porous microfluidic chip, and contact angles of 4.7 and 4.5° were measured. Additionally, the measurement of the three-dimensional morphology of vertically evaporating deionized water droplets on a glass surface was done, due to which calculation of contact angles at various orientations was possible. This work offers a feasible new method for measuring the 3D interface morphology of bubbles and droplets, particularly in microfluidic visualization, addressing current measurement gaps.
Collapse
Affiliation(s)
- Jinqing Wang
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Muan Zhang
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Wei Liu
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Ming Kong
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Mingxiu Zhan
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Xuhui Wu
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Hao Wu
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Zhi Feng
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Xu Xu
- The Institute for Energy Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| |
Collapse
|
2
|
Su YY, Pan DW, Deng CF, Yang SH, Faraj Y, Xie R, Ju XJ, Liu Z, Wang W, Chu LY. Facile and Scalable Rotation-Based Microfluidics for Controllable Production of Emulsions, Microparticles, and Microfibers. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yousef Faraj
- Department of Chemical Engineering, University of Chester, Chester CH1 4BJ, United Kingdom
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
3
|
Madadelahi M, Azimi-Boulali J, Madou M, Martinez-Chapa SO. Characterization of Fluidic-Barrier-Based Particle Generation in Centrifugal Microfluidics. MICROMACHINES 2022; 13:mi13060881. [PMID: 35744496 PMCID: PMC9228483 DOI: 10.3390/mi13060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles’ size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle’s ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets.
Collapse
Affiliation(s)
- Masoud Madadelahi
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Correspondence: (M.M.); (S.O.M.-C.)
| | - Javid Azimi-Boulali
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Sergio Omar Martinez-Chapa
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Correspondence: (M.M.); (S.O.M.-C.)
| |
Collapse
|
4
|
Research on the Centrifugal Driving of a Water-in-Oil Droplet in a Microfluidic Chip with Spiral Microchannel. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Combining the advantages of droplet-based microfluidics and centrifugal driving, a method for centrifugally driving W/O droplets with spiral microchannel is proposed in this paper. A physical model of droplet flow was established to study the flow characteristics of the W/O droplet in the spiral microchannel driven by centrifugal force, and kinematic analysis was performed based on the rigid body assumption. Then, the theoretical formula of droplet flow rate was obtained. The theoretical value was compared with the actual value measured in the experiments. The result shows that the trend of the theoretical value is consistent with the measured value, and the theoretical value is slightly larger than the experimentally measured value caused by deformation. Moreover, it is found that the mode of centrifugal driving with spiral microchannel has better flow stability than the traditional centrifugal driving structure. A larger regulation speed range can be achieved by adjusting the motor speed without using expensive equipment or precise instruments. This study can provide a basis and theoretical reference for the development of droplet-based centrifugal microfluidic chips.
Collapse
|
5
|
Chen C, Ding Z, Tiwari SS, Wang J, Wang J, Liu G, Li Y, Guo M, Nandakumar K. Experimental and
CFD
study of sodium alginate droplets impacting onto immiscible deep liquid surface. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chengmin Chen
- Energy Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
- School of Energy and Power Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
- Cain Department of Chemical Engineering Louisiana State University Baton Rouge Louisiana USA
| | - Zhizhong Ding
- Cain Department of Chemical Engineering Louisiana State University Baton Rouge Louisiana USA
| | - Shashank S. Tiwari
- Cain Department of Chemical Engineering Louisiana State University Baton Rouge Louisiana USA
- Department of Chemical Engineering Institute of Chemical Technology Mumbai India
| | - Jianmei Wang
- Energy Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
- School of Energy and Power Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jianchun Wang
- Energy Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
- School of Energy and Power Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Guangxia Liu
- Energy Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
- School of Energy and Power Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Yan Li
- Energy Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
- School of Energy and Power Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Meng Guo
- Shandong Computer Science Center (National Supercomputing Center in Jinan) Jinan China
| | - Krishnaswamy Nandakumar
- Cain Department of Chemical Engineering Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
6
|
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R, Amine C, Marze S. Droplet Microfluidics for Food and Nutrition Applications. MICROMACHINES 2021; 12:863. [PMID: 34442486 PMCID: PMC8400250 DOI: 10.3390/mi12080863] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet-droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics-analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences.
Collapse
Affiliation(s)
- Karin Schroen
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
| | - Claire Berton-Carabin
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Denis Renard
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | | | - Adeline Boire
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Rémy Cochereau
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Chloé Amine
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Sébastien Marze
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| |
Collapse
|
7
|
Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. BIOSENSORS 2020; 10:E165. [PMID: 33153122 PMCID: PMC7693962 DOI: 10.3390/bios10110165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023]
Abstract
Nanoparticles (NPs) and microparticles (MPs) have been widely used in different areas of research such as materials science, energy, and biotechnology. On-demand synthesis of NPs and MPs with desired chemical and physical properties is essential for different applications. However, most of the conventional methods for producing NPs/MPs require bulky and expensive equipment, which occupies large space and generally need complex operation with dedicated expertise and labour. These limitations hinder inexperienced researchers to harness the advantages of NPs and MPs in their fields of research. When problems individual researchers accumulate, the overall interdisciplinary innovations for unleashing a wider range of directions are undermined. In recent years, modular and integrated systems are developed for resolving the ongoing dilemma. In this review, we focus on the development of modular and integrated systems that assist the production of NPs and MPs. We categorise these systems into two major groups: systems for the synthesis of (1) NPs and (2) MPs; systems for producing NPs are further divided into two sections based on top-down and bottom-up approaches. The mechanisms of each synthesis method are explained, and the properties of produced NPs/MPs are compared. Finally, we discuss existing challenges and outline the potentials for the development of modular and integrated systems.
Collapse
Affiliation(s)
- Hongda Lu
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; (H.L.); (G.Y.)
| | - Haiyue Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA;
| | - Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Weihua Li
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
8
|
Azimi-Boulali J, Madadelahi M, Madou MJ, Martinez-Chapa SO. Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review. MICROMACHINES 2020; 11:mi11060603. [PMID: 32580516 PMCID: PMC7344714 DOI: 10.3390/mi11060603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
The use of multiphase flows in microfluidics to carry dispersed phase material (droplets, particles, bubbles, or fibers) has many applications. In this review paper, we focus on such flows on centrifugal microfluidic platforms and present different methods of dispersed phase material generation. These methods are classified into three specific categories, i.e., step emulsification, crossflow, and dispenser nozzle. Previous works on these topics are discussed and related parameters and specifications, including the size, material, production rate, and rotational speed are explicitly mentioned. In addition, the associated theories and important dimensionless numbers are presented. Finally, we discuss the commercialization of these devices and show a comparison to unveil the pros and cons of the different methods so that researchers can select the centrifugal droplet/particle generation method which better suits their needs.
Collapse
Affiliation(s)
- Javid Azimi-Boulali
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
| | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Correspondence: (M.M.); (S.O.M.-C.)
| | - Marc J. Madou
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Correspondence: (M.M.); (S.O.M.-C.)
| |
Collapse
|
9
|
Mou CL, Deng QZ, Hu JX, Wang LY, Deng HB, Xiao G, Zhan Y. Controllable preparation of monodisperse alginate microcapsules with oil cores. J Colloid Interface Sci 2020; 569:307-319. [PMID: 32126344 DOI: 10.1016/j.jcis.2020.02.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/23/2023]
Abstract
Here we report a novel strategy for controllable preparation monodisperse alginate microcapsules with oil cores, where the thickness of the alginate shells, as well as the number and diversity of the oil cores can be tailored precisely. Monodisperse oil-in-water-in-oil (O/W/O) emulsions are generated in a microfluidic device as templates, which contain alginate molecules and a water-soluble calcium complex in the middle aqueous phase. Alginate microcapsules are produced by gelling O/W/O emulsions in oil solution with acetic acid, where the pH decreasing will trigger the calcium ions being released from calcium complex and cross-linking with alginate molecules. Increasing the alginate molecule concentration in emulsion templates affects little on the thickness of the microcapsules but improves their stability in DI water. The strength of alginate microcapsules can be reinforced by post cross-linking in calcium chloride, polyetherimide, or chitosan solution. Typical payloads, such as thyme essential oil, lavender essential oil and W/O emulsions are encapsulated in alginate microcapsules successfully. Furthermore, tailoring the thickness of the alginate shells, as well as the number and the diversity of the oil cores precisely by manipulation the emulsion templates with microfluidics is also demonstrated. The proposed method shows excellent controllability in designing alginate microcapsules with oil cores.
Collapse
Affiliation(s)
- Chuan-Lin Mou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| | - Qi-Zheng Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Jia-Xin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Lin-Yuan Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Hong-Bo Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Guoqing Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Yingqing Zhan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| |
Collapse
|
10
|
Yue S, Ye W, Xu Z. SERS monitoring of the Fenton degradation reaction based on microfluidic droplets and alginate microparticles. Analyst 2019; 144:5882-5889. [PMID: 31497808 DOI: 10.1039/c9an01077g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy as a powerful tool has been used to explore different catalysis degradation reactions, whereas some drawbacks caused by ferric ions still exist in the current SERS monitoring of the Fenton reaction process. In this work, microfluidic droplet- and alginate microparticle-based methods were, respectively, applied to realize SERS monitoring of the Fenton degradation process in a relatively stable environment, which benefited from reduction of the loss of ferrous ions and the aggregation of the SERS substrate. As expected, the spectroscopic evidence at the molecular level directly revealed the degradation mechanism of rhodamine dyes, showing that the chemical bonds between xanthene and carboxybenzene broke continuously during the reaction. Afterward, the degradation mechanism determined by SERS was verified via mass spectrometry detection, which confirmed the validity of the SERS-based method. More broadly, the microfluidic droplet- and microparticle-based methods are potentially applicable for SERS monitoring of more Fenton degradation reactions.
Collapse
Affiliation(s)
- Shuai Yue
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P.R. China.
| | | | | |
Collapse
|
11
|
On-Chip Preparation of Amphiphilic Nanomicelles-in-Sodium Alginate Spheroids as a Novel Platform Against Triple-Negative Human Breast Cancer Cells: Fabrication, Study of Microfluidics Flow Hydrodynamics and Proof of Concept for Anticancer and Drug Delivery Applications. J Pharm Sci 2019; 108:3528-3539. [PMID: 31351864 DOI: 10.1016/j.xphs.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/20/2019] [Accepted: 07/19/2019] [Indexed: 11/20/2022]
Abstract
Spheroidal microparticles versatility as a drug carrier makes it a real workhorse in drug delivery applications. Despite of their long history, few research publications emphasize on how to improve their potential targeting ability, production rate, and dissolution characteristics. The current research presents an example of the combined state of the art of nano- and microparticles development technologies. Here in a novel on-chip, microfluidics approach is developed for encapsulating amphiphilic nanomicelles-in-sodium alginate spheroid. The designed nano-in-micro drug delivery system revealed a superior cytotoxicity against triple-negative human breast cancer cell line (MDA-MB-231), besides, a more sustained release of the drug. Hydrodynamics of the designed microchip was also investigated as a function of different flow rates with an insight on the dimensionless numbers; capillary number and Weber number throughout the microchannels. Our study confirmed the efficient encapsulation of nanomicelles within the alginate shell. The current microfluidics approach can be efficiently applied for uniform production of nano-in-microparticles with potential anticancer capability.
Collapse
|
12
|
Tang G, Xiong R, Lv D, Xu RX, Braeckmans K, Huang C, De Smedt SC. Gas-Shearing Fabrication of Multicompartmental Microspheres: A One-Step and Oil-Free Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802342. [PMID: 31065527 PMCID: PMC6498303 DOI: 10.1002/advs.201802342] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/17/2019] [Indexed: 05/19/2023]
Abstract
Multicompartmental microparticles (MCMs) have attracted considerable attention in biomedical engineering and materials sciences, as they can carry multiple materials in the separated phases of a single particle. However, the robust fabrication of monodisperse, highly compartmental MCMs at the micro- and nanoscales remains challenging. Here, a simple one-step and oil-free process, based on the gas-flow-assisted formation of microdroplets ("gas-shearing"), is established for the scalable production of monodisperse MCMs. By changing the configuration of the needle system and gas flow in the spray ejector device, the oil-free gas-shearing process easily allows the design of microparticles consisting of two, four, six, and even eight compartments with a precise control over the properties of each compartment. As oils and surfactants are not used, the gas-shearing method is highly cytocompatible. The versatile applications of such MCMs are demonstrated by producing a magnetic microrobot and a biocompatible carrier for the coculturing of cells. This research suggests that the oil-free gas-shearing strategy is a reliable, scalable, and biofriendly process for producing MCMs that may become attractive materials for biomedical applications.
Collapse
Affiliation(s)
- Guosheng Tang
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent UniversityOttergemsesteenweg 4609000GhentBelgium
- Department of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230022P. R. China
| | - Dan Lv
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision InstrumentationUniversity of Science and Technology of ChinaHefei230022P. R. China
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent UniversityOttergemsesteenweg 4609000GhentBelgium
| | - Chaobo Huang
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
| | - Stefaan C. De Smedt
- College of Chemical EngineeringJiangsu Key Lab of Biomass‐based Green Fuels and ChemicalsNanjing Forestry University (NFU)Nanjing210037P. R. China
- Laboratory of General Biochemistry and Physical PharmacyFaculty of Pharmaceutical SciencesGhent UniversityOttergemsesteenweg 4609000GhentBelgium
| |
Collapse
|
13
|
Controlled fabrication of multi-core alginate microcapsules. J Colloid Interface Sci 2017; 507:27-34. [DOI: 10.1016/j.jcis.2017.07.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/17/2023]
|
14
|
Yue S, Sun X, Wang N, Wang Y, Wang Y, Xu Z, Chen M, Wang J. SERS-Fluorescence Dual-Mode pH-Sensing Method Based on Janus Microparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39699-39707. [PMID: 29063750 DOI: 10.1021/acsami.7b13321] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A surface-enhanced Raman scattering (SERS)-fluorescence dual-mode pH-sensing method based on Janus microgels was developed, which combined the advantages of high specificity offered by SERS and fast imaging afforded by fluorescence. Dual-mode probes, pH-dependent 4-mercaptobenzoic acid, and carbon dots were individually encapsulated in the independent hemispheres of Janus microparticles fabricated via a centrifugal microfluidic chip. On the basis of the obvious volumetric change of hydrogels in different pHs, the Janus microparticles were successfully applied for sensitive and reliable pH measurement from 1.0 to 8.0, and the two hemispheres showed no obvious interference. The proposed method addressed the limitation that sole use of the SERS-based pH sensing usually failed in strong acidic media. The gastric juice pH and extracellular pH change were measured separately in vitro using the Janus microparticles, which confirmed the validity of microgels for pH sensing. The microparticles exhibited good stability, reversibility, biocompatibility, and ideal semipermeability for avoiding protein contamination, and they have the potential to be implantable sensors to continuously monitor pH in vivo.
Collapse
Affiliation(s)
- Shuai Yue
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Xiaoting Sun
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Ning Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Yaning Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Mingli Chen
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Northeastern University , Shenyang 110819, P. R. China
| |
Collapse
|
15
|
Boggione DM, Batalha LS, Gontijo MT, Lopez ME, Teixeira AV, Santos IJ, Mendonça RC. Evaluation of microencapsulation of the UFV-AREG1 bacteriophage in alginate-Ca microcapsules using microfluidic devices. Colloids Surf B Biointerfaces 2017; 158:182-189. [DOI: 10.1016/j.colsurfb.2017.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
|
16
|
Ran R, Sun Q, Baby T, Wibowo D, Middelberg AP, Zhao CX. Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Gupta A, Badruddoza AZM, Doyle PS. A General Route for Nanoemulsion Synthesis Using Low-Energy Methods at Constant Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7118-7123. [PMID: 28654749 DOI: 10.1021/acs.langmuir.7b01104] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The central dogma of nanoemulsion formation using low-energy methods at constant temperature-popularly known as the emulsion inversion point (EIP) method-is that to create O/W nanoemulsions, water should be added to a mixture of an oil and surfactant. Here, we demonstrate that the above order of mixing is not universal and a reverse order of mixing could be superior, depending on the choice of surfactant and liquid phases. We propose a more general methodology to make O/W as well as W/O nanoemulsions by studying the variation of droplet size with the surfactant hydrophilic-lypophilic balance for several model systems. Our analysis shows that surfactant migration from the initial phase to the interface is the critical step for successful nanoemulsion synthesis of both O/W and W/O nanoemulsions. On the basis of our understanding and experimental results, we utilize the reverse order of mixing for two applications: (1) crystallization and formulation of pharmaceutical drugs with faster dissolution rates and (2) synthesis of alginate-based nanogels. The general route provides insights into nanoemulsion formation through low-energy methods and also opens up possibilities that were previously overlooked in the field.
Collapse
Affiliation(s)
- Ankur Gupta
- Massachusetts Institute of Technology , E17-504F, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Abu Zayed Md Badruddoza
- Massachusetts Institute of Technology , E17-504F, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| | - Patrick S Doyle
- Massachusetts Institute of Technology , E17-504F, 77 Mass Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Morimoto Y, Onuki M, Takeuchi S. Mass Production of Cell-Laden Calcium Alginate Particles with Centrifugal Force. Adv Healthc Mater 2017; 6. [PMID: 28426183 DOI: 10.1002/adhm.201601375] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/26/2017] [Indexed: 12/21/2022]
Abstract
This paper describes a centrifuge-based device for oil-free and mass production of calcium-alginate (Ca-alginate) particles. The device is composed of four components: a tank with a glass capillary for forming sodium alginate droplets, a collecting bath with calcium chloride (CaCl2 ) solution, a waste liquid box, and a bypass channel bridged between the collecting bath and the waste liquid box. When the device is centrifuged, extra CaCl2 solution in the collecting bath is delivered to the waste liquid box to maintain the appropriate liquid level of CaCl2 solution for the production of monodisperse Ca-alginate particles. The proposed device enables oil-free production of over 45 000 uniformly sized Ca-alginate particles in a single 240 s process, whereas using the conventional method with only a glass capillary, ≈1000 particles are formed within the same processing time. Because of the high biocompatibility of the oil-free process, the device is applicable to cell encapsulation in Ca-alginate particles with high cell viability, as well as the formation of a macroscopic 3D cellular structure using Ca-alginate particles covered with cells as assembly modules. These results suggest that the device can be a useful tool for preparing experimental platforms in biomedical and tissue engineering fields.
Collapse
Affiliation(s)
- Yuya Morimoto
- Center for International Research on Integrative Biomedical Systems (CIBiS); Institute of Industrial Science (IIS); The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Maiko Onuki
- Center for International Research on Integrative Biomedical Systems (CIBiS); Institute of Industrial Science (IIS); The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Shoji Takeuchi
- Center for International Research on Integrative Biomedical Systems (CIBiS); Institute of Industrial Science (IIS); The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
- Takeuchi Biohybrid innovation Project; ERATO; Japan Science and Technology (JST); Komaba Open Laboratory (KOL) Room M202; 4-6-1 Komaba Meguro-ku Tokyo 153-8904 Japan
| |
Collapse
|
19
|
Sun XT, Zhang Y, Zheng DH, Yue S, Yang CG, Xu ZR. Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles. Biosens Bioelectron 2017; 92:81-86. [DOI: 10.1016/j.bios.2017.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
|
20
|
Choi A, Seo KD, Kim DW, Kim BC, Kim DS. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications. LAB ON A CHIP 2017; 17:591-613. [PMID: 28101538 DOI: 10.1039/c6lc01023g] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Kyoung Duck Seo
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Do Wan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Bum Chang Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| |
Collapse
|
21
|
Armada-Moreira A, Taipaleenmäki E, Itel F, Zhang Y, Städler B. Droplet-microfluidics towards the assembly of advanced building blocks in cell mimicry. NANOSCALE 2016; 8:19510-19522. [PMID: 27858045 DOI: 10.1039/c6nr07807a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Therapeutic cell mimicry is an approach in nanomedicine aiming at substituting for missing or lost cellular functions employing nature-inspired concepts. Pioneered decades ago, only now is this technology empowered with the arsenal of nanotechnological tools and ready to provide radically new solutions such as assembling synthetic organelles and artificial cells. One of these tools is droplet microfluidics (D-μF), which provides the flexibility to generate cargo-loaded particles with tunable size and shape in a fast and reliable manner, an essential requirement in cell mimicry. This minireview aims at outlining the developments in D-μF from the past four years focusing on the assembly of nanoparticles, Janus-shaped and other non-spherical particles as well as their loading with biological payloads.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark. and Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal and Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|