1
|
Two silver–containing polyoxometalate–based inorganic–organic hybrids as heterogeneous bifunctional catalysts for construction of C–C bonds and decontamination of sulfur mustard simulant. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Perspectives on green fabrication and sustainable utilization of adsorption materials for wastewater treatment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Bai W, Wang B, Yang S, Yan S, Cao C, Zhou Z, Ji J, Guo K, Tang C. Adsorption and Removal of Antibiotic Pollutants using CuO-Co 3 O 4 Co-modified Porous Boron Nitride Fibers in Aqueous Solution. Chempluschem 2022; 87:e202200290. [PMID: 36375822 DOI: 10.1002/cplu.202200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
The presence of antibiotic contaminants in aqueous environment already poses significant risks to ecological sustainability, biodiversity and human public health and safety. Therefore, it is urgent to develop practical water pollution control technologies and new materials. Here, we prepared CuO-Co3 O4 co-modified porous boron nitride fibers (P-BNFs) for the adsorption and removal of tetracycline antibiotics (TCs) in aqueous environment. The prepared adsorbents were characterized by XRD, FTIR, XPS, SEM, TEM and BET, and the adsorption behavior was explored by batch experiments. The results show that the removal percentage for doxycycline (DC) reaches 98.68 %, which was much higher than that of P-BNFs, and the modification results of P-BNFs with CuO or Co3 O4 alone. After five regeneration cycles, the removal rate of DC by CuO-Co3 O4 /P-BNFs was still as high as 89.33 %. This is promising and indicates that the prepared CuO-Co3 O4 /P-BNFs adsorbent has good renewable recycling performance and practical application prospects.
Collapse
Affiliation(s)
- Wenjuan Bai
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| | - Bozheng Wang
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| | - Shaobo Yang
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| | - Song Yan
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| | - Chaochao Cao
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| | - Zheng Zhou
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| | - Jiawei Ji
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| | - Kai Guo
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Tianjin No.45 High School, 300130, Tianjin, P. R. China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, 300130, Tianjin, P. R. China
| |
Collapse
|
4
|
In-Situ Fabricating Ag Nanoparticles on TiO2 for Unprecedented High Catalytic Activity of 4-Nitrophenol Reduction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Su R, Xie C, Alhassan SI, Huang S, Chen R, Xiang S, Wang Z, Huang L. Oxygen Reduction Reaction in the Field of Water Environment for Application of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1719. [PMID: 32872678 PMCID: PMC7559498 DOI: 10.3390/nano10091719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Water pollution has caused the ecosystem to be in a state of imbalance for a long time. It has become a major global ecological and environmental problem today. Solving the potential hidden dangers of pollutants and avoiding unauthorized access to resources has become the necessary condition and important task to ensure the sustainable development of human society. To solve such problems, this review summarizes the research progress of nanomaterials in the field of water aimed at the treatment of water pollution and the development and utilization of new energy. The paper also tries to seek scientific solutions to environmental degradation and to create better living environmental conditions from previously published cutting edge research. The main content in this review article includes four parts: advanced oxidation, catalytic adsorption, hydrogen, and oxygen production. Among a host of other things, this paper also summarizes the various ways by which composite nanomaterials have been combined for enhancing catalytic efficiency, reducing energy consumption, recycling, and ability to expand their scope of application. Hence, this paper provides a clear roadmap on the status, success, problems, and the way forward for future studies.
Collapse
Affiliation(s)
- Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (R.S.); (S.H.); (R.C.); (S.X.)
| | - Chuyue Xie
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (R.S.); (S.H.); (R.C.); (S.X.)
| | | | - Shunhong Huang
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (R.S.); (S.H.); (R.C.); (S.X.)
| | - Runhua Chen
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (R.S.); (S.H.); (R.C.); (S.X.)
| | - Siyuan Xiang
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (R.S.); (S.H.); (R.C.); (S.X.)
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510655, China;
| | - Lei Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China;
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Zhu Y, Wang W, Yu H, Wang A. Preparation of porous adsorbent via Pickering emulsion template for water treatment: A review. J Environ Sci (China) 2020; 88:217-236. [PMID: 31862064 DOI: 10.1016/j.jes.2019.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 05/27/2023]
Abstract
Porous materials as emerging potential adsorbents have received much more attention because they are capable of capturing various pollutants with fast adsorption rate, high adsorption capacity, good selectivity and excellent reusability. In order to prepare porous materials with decent porous structure, Pickering emulsion template method has been proved to be one of the most effective technologies to create pore structure. This paper reviewed comprehensively the latest research progress on the preparation of porous materials from various Pickering emulsions and their applications in the decontamination of pollutants (e.g., heavy metal ions, organic pollutants) and in the oil/water separation. It was expected that the summaries and discussions in this review will provide insights into the design and fabrication of new efficient porous adsorbents, and also give us a better understanding of the subject.
Collapse
Affiliation(s)
- Yongfeng Zhu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Yu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
7
|
Deshmukh S, Dhodamani AG, Patil SM, Mullani SB, More KV, Delekar SD. Interfacially Interactive Ternary Silver-Supported Polyaniline/Multiwalled Carbon Nanotube Nanocomposites for Catalytic and Antibacterial Activity. ACS OMEGA 2020; 5:219-227. [PMID: 31956768 PMCID: PMC6963897 DOI: 10.1021/acsomega.9b02526] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Herein, a protocol strategy has been designed for the preparation of ternary silver nanoparticles-supported polyaniline multiwalled carbon nanotube (Ag NPs-PANI/MWCNT) nanocomposites with a chemical interaction for catalytic and antibacterial activity. The morphological study confirmed that Ag NPs were immobilized on the surface of PANI, and afterward, Ag NPs-PANI were mixed with the MWCNTs. The X-ray diffraction technique revealed the face-centered cubic structure of Ag NPs, and the X-ray photoelectron spectroscopy study revealed the chemical constituent and signature of π-π* and C-N interactions in the nanocomposites. The ternary Ag NPs-PANI/MWCNTs nanocomposites have the apparent rate of reaction (K app) as 5.4 × 10-3 s-1, higher than binary nanocomposites for catalytic reduction of 4-nitrophenol to 4-aminophenol at room temperature. Antibacterial activity of Ag NPs-PANI/MWCNT nanocomposites is higher against pathogenic bacteria. Thereafter, because of multifold applications of ternary nanocomposites, they have a broad scope in the field of environmental and healthcare sectors.
Collapse
Affiliation(s)
- Shamkumar
P. Deshmukh
- Department
of Chemistry, Shivaji University, Kolhapur 416 001, Maharashtra, India
- Department
of Chemistry, D. B. F. Dayanand College
of Arts and Science, Solapur 413 001, Maharashtra, India
| | - Ananta G. Dhodamani
- Department
of Chemistry, Shivaji University, Kolhapur 416 001, Maharashtra, India
| | - Satish M. Patil
- Department
of Chemistry, Shivaji University, Kolhapur 416 001, Maharashtra, India
- Department
of Chemistry, Karmaveer Hire Arts, Science,
Commerce and Education College, Gargoti, Kolhapur 416
209, Maharashtra, India
| | - Sajid B. Mullani
- Department
of Chemistry, Shivaji University, Kolhapur 416 001, Maharashtra, India
| | - Krantiveer V. More
- Department
of Chemistry, Shivaji University, Kolhapur 416 001, Maharashtra, India
| | - Sagar D. Delekar
- Department
of Chemistry, Shivaji University, Kolhapur 416 001, Maharashtra, India
| |
Collapse
|
8
|
Wang W, Li Y, Wang W, Gao B, Wang Z. Palygorskite/silver nanoparticles incorporated polyamide thin film nanocomposite membranes with enhanced water permeating, antifouling and antimicrobial performance. CHEMOSPHERE 2019; 236:124396. [PMID: 31545199 DOI: 10.1016/j.chemosphere.2019.124396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Palygorskite (Pal) is a highly hydrophilic clay mineral with tubular structure and high aspect ratio, which facilitates the attachment of nanoparticles to their surface. It has become a promising new membrane preparation additive due to its lotus root like tubular structure, low price and environmental friendliness. Silver nanoparticles (AgNPs) have excellent antibacterial ability, and their incorporation into the membrane can significantly improve the bacteriostasis of the membrane. Herein, Pal was coated by polydopamine (PDA), which acted as both the adhesive and reducing agent for AgNPs. The incorporation of the Pal/Ag nanocomposite resulted in a thin polyamide (PA) layer with rough surface morphology, which facilitated the improvement of membrane permeability. Furthermore, the Pal's parallel tubes with a 0.37 × 0.63 nm2 cross-sectional area provided nanochannels allowing fast pass through of water molecules. The as-prepared TFN-7.5Pal/Ag membrane exhibited a permeate flux of 39.9 LMH at 16 bar, which was 1.6 times as high as that of the TFC membrane, accompanied with an acceptable NaCl rejection of 98.3%. Besides, antibacterial tests demonstrated that the TFN membrane presented excellent antibacterial performance against Escherichia coli (98.0%).
Collapse
Affiliation(s)
- Wenyi Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266100, PR China; School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong, 266100, PR China.
| | - Wenbo Wang
- Center for Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Zhining Wang
- School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
9
|
Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of Palygorskite/titanium dioxide hybrid material. J Colloid Interface Sci 2019; 537:1-10. [DOI: 10.1016/j.jcis.2018.10.092] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/18/2022]
|
10
|
Regeneration and reuse of polymeric nanocomposites in wastewater remediation: the future of economic water management. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2403-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Praveen Kumar PP, Kathuria L, Haridas V. Cysteine-based silver nanoparticles as dual colorimetric sensors for cations and anions. NEW J CHEM 2016. [DOI: 10.1039/c6nj01486k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The synthesis of amide–triazole-based Ag NPs and their sensing ability towards anions and cations in aqueous solution were investigated. The importance of amide–triazole as a binding motif, in conjunction with Ag NPs, and the mode of the sensing ability of these amide–triazole Ag NPs as dual colorimetric sensors have been studied in detail.
Collapse
Affiliation(s)
- P. P. Praveen Kumar
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| | - Lakshay Kathuria
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| | - V. Haridas
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi - 110016
- India
| |
Collapse
|