1
|
Butler CSG, Kelleppan-Meaney VT, Williams AP, Giles LW, Vidallon MLP, Sokolova A, de Campo L, Tuck KL, Tabor RF. Influence of tail group length, amide functionality and added salt ion identity on the behaviour of betaine surfactants. J Colloid Interface Sci 2024; 653:338-350. [PMID: 37717434 DOI: 10.1016/j.jcis.2023.08.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
Hypothesis The behaviour of surfactants in solution and at interfaces is governed by a combination of steric and electrostatic effects experienced by surfactant molecules as they interact with solvent, other species in solution, and each other. It would therefore be anticipated that highly interacting groups would significantly influence surfactant behaviour. The widely used amide functionality has polar H-bond donor/acceptor properties, and therefore its inclusion into a surfactant structure should have a profound effect on surface activity and self-assembly of that surfactant when compared to the equivalent molecule without an amide linker. Further, chaotropic or kosmotropic salt ions that affect water structuring and hydrogen bonding may provide opportunities for further tuning surfactant interactions in such cases. Experiments A library of betaine surfactant with tail lengths n=14-22 both with and without an amidopropyl linker were synthesised to study the effect of the amide functionality on surfactant properties. Characterisation of the molecules interfacial properties were performed using pendant drop tensiometry and their solution state formulation properties were probed using small-angle neutron scattering (SANS) and rheological measurements. Findings Presence of an amidopropyl linker had little effect on aggregation propensity (as evidenced by critical micelle concentration) and aggregate morphology of betaine surfactants, but did increase the Krafft temperature of these surfactants. SANS analysis indicated that aggregate morphology of alkyl betaine surfactants could be influenced by the addition of sodium salts with chaotropic counterions (I- and SCN-), but they were insensitive to more kosmotropic anions (SO42-, F- and Cl-), providing unique and novel solution control methods for this (supposedly salt-insensitive) class of surfactants.
Collapse
Affiliation(s)
- Calum S G Butler
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | | | - Ashley P Williams
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | | | - Anna Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Almajidi YQ, Kadhim MM, Alsaikhan F, Turki Jalil A, Hassan Sayyid N, Alexis Ramírez-Coronel A, Hassan Jawhar Z, Gupta J, Nabavi N, Yu W, Ertas YN. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. ENVIRONMENTAL RESEARCH 2023; 227:115722. [PMID: 36948284 DOI: 10.1016/j.envres.2023.115722] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.
Collapse
Affiliation(s)
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group(GIEE), National University of Education, Ecuador
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P, India
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
3
|
Anjali, Guha A, Pandey S. Mixed micelle formation by sodium dodecylsulfate and dodecyltrimethylammonium bromide in aqueous ionic liquid media. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Pei Y, Ma J, Song F, Zhao Y, Li Z, Wang H, Wang J, Du R. Stable nanoreactors for material fabrication using the aggregation of fluorinated ionic liquid surfactants in ionic liquid solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022; 155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common new cancer case and the second most fatal malignancy in men. Surgery, endocrine therapy, radiotherapy and chemotherapy are the main clinical treatment options for PCa. However, most prostate cancers can develop into castration-resistant prostate cancer (CRPC), and due to the invasiveness of prostate cancer cells, they become resistant to different treatments and activate tumor-promoting signaling pathways, thereby inducing chemoresistance, radioresistance, ADT resistance, and immune resistance. Nanotechnology, which can combine treatment with diagnostic imaging tools, is emerging as a promising treatment modality in prostate cancer therapy. Nanoparticles can not only promote their accumulation at the pathological site through passive targeting techniques for enhanced permeability and retention (EPR), but also provide additional advantages for active targeting using different ligands. This property results in a reduced drug dose to achieve the desired effect, a longer duration of action within the tumor and fewer side effects on healthy tissues. In addition, nanotechnology can create good synergy with radiotherapy, chemotherapy, thermotherapy, photodynamic therapy and gene therapy to enhance their therapeutic effects with greater scope, and reduce the resistance of prostate cancer. In this article, we intend to review and discuss the latest technologies regarding the use of nanomaterials as therapeutic and diagnostic tools for prostate cancer.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Ta HY, Déjugnat C, Balayssac S, Collin F, Balor S, Gilard V, Couderc F. Separation of unsaturated C18 fatty acids using perfluorinated-micellar electrokinetic chromatography: II) role of nano-structuration. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wang J, Niven RK. Unification of surface tension isotherms of PFOA or GenX salts in electrolyte solutions by mean ionic activity. CHEMOSPHERE 2021; 280:130715. [PMID: 33965869 DOI: 10.1016/j.chemosphere.2021.130715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The surface tension isotherms of soluble salts of per- and polyfluoroalkyl substances (PFAS) in electrolyte solutions are typically reported as functions of the PFAS concentration. However, for univalent salts and electrolytes, the Langmuir-Szyszkowski equation is a function of the mean ionic activity a*. Using previously reported data, we show that for salts of perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (GenX™), use of a* rather than concentration provides a unified surface tension isotherm, independent of the electrolyte concentration. This suggests that the electrolyte dependence of the isotherm arises purely from its effect on PFAS activity, rather than an intrinsic surface property. This finding has important implications for the understanding of PFAS retention in saline unsaturated soils, and for PFAS extraction from saline waters by foam fractionation.
Collapse
Affiliation(s)
- Jianlong Wang
- School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, ACT, 2610, Australia.
| | - Robert K Niven
- School of Engineering and Information Technology, University of New South Wales, Northcott Drive, Canberra, ACT, 2610, Australia.
| |
Collapse
|
8
|
Akhtar MN, Noor S, Taj MB, Khalid M, Imran M. Thermodynamic and solubilization properties of a polynuclear copper complex in ionic surfactants media. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1929291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Muhammad Nadeem Akhtar
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sadia Noor
- Department of Chemistry, Govt. College Women University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Babar Taj
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee YI. Recent Advances in Nanomicelles Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E70. [PMID: 33396938 PMCID: PMC7823398 DOI: 10.3390/nano11010070] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
The efficient and selective delivery of therapeutic drugs to the target site remains the main obstacle in the development of new drugs and therapeutic interventions. Up until today, nanomicelles have shown their prospective as nanocarriers for drug delivery owing to their small size, good biocompatibility, and capacity to effectively entrap lipophilic drugs in their core. Nanomicelles are formed via self-assembly in aqueous media of amphiphilic molecules into well-organized supramolecular structures. Molecular weights and structure of the core and corona forming blocks are important properties that will determine the size of nanomicelles and their shape. Selective delivery is achieved via novel design of various stimuli-responsive nanomicelles that release drugs based on endogenous or exogenous stimulations such as pH, temperature, ultrasound, light, redox potential, and others. This review summarizes the emerging micellar nanocarriers developed with various designs, their outstanding properties, and underlying principles that grant targeted and continuous drug delivery. Finally, future perspectives, and challenges for nanomicelles are discussed based on the current achievements and remaining issues.
Collapse
Affiliation(s)
- Salah M. Tawfik
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Surfactant Laboratory, Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Shavkatjon Azizov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
- Laboratory of Polysaccharide Chemistry, Institute of Bioorganic Chemistry, Uzbekistan Academy of Science, Tashkent 100125, Uzbekistan
| | - Mohamed R. Elmasry
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Mirkomil Sharipov
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| | - Yong-Ill Lee
- Department of Materials Convergence and System Engineering, Changwon National University, Changwon 51140, Korea; (S.M.T.); (S.A.); (M.R.E.); (M.S.)
| |
Collapse
|
10
|
Ali M, Meaney SP, Giles LW, Holt P, Majumder M, Tabor RF. Capture of Perfluorooctanoic Acid Using Oil-Filled Graphene Oxide-Silica Hybrid Capsules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3549-3558. [PMID: 32022547 DOI: 10.1021/acs.est.9b05469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorinated hydrocarbon (FHC) contamination has attracted global attention recently because of persistence within the environment and ecosystems of many types of FHC. The surfactant perfluorooctanoic acid (PFOA) is particularly commonly found in contaminated sites, and thus, urgent action is needed for its removal from the environment. In this study, water dispersible hybrid capsules were successfully prepared from an oil-in-water emulsion stabilized by graphene oxide and including a silicate precursor to grow a strong, mesoporous capsule shell surrounding the droplets. These capsules were decorated with amine groups to present a positively charged outer corona that attracts negative PFOA molecules. The aminated capsules were effectively applied as a novel technology to adsorb and sequester PFOA contamination in water. It was confirmed that PFOA removal by the capsules was pH and PFOA concentration dependent, with adsorption efficiencies of >60 mg g-1 under ideal conditions. PFOA removal kinetics followed using high-performance liquid chromatography and liquid chromatography-mass spectrometry showed that capture of PFOA by the capsules reached a maximum of >99.9% in 2-3 days.
Collapse
Affiliation(s)
- Muthana Ali
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department of Chemistry, Karbala University, Karbala 56001, Iraq
| | - Shane P Meaney
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Phillip Holt
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Research Hub on Graphene Enabled Industry Transformation, Monash University, Clayton, Victoria 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Prikhod’ko SA, Shabalin AY, Shmakov MM, Bardin VV, Adonin NY. Ionic liquids with fluorine-containing anions as a new class of functional materials: features of the synthesis, physicochemical properties, and use. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2719-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Brusseau ML, Van Glubt S. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. WATER RESEARCH 2019; 161:17-26. [PMID: 31174056 PMCID: PMC7039257 DOI: 10.1016/j.watres.2019.05.095] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 05/23/2023]
Abstract
The objective of this research is to examine the influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Surface tensions were measured for select PFAS, as well as a representative hydrocarbon surfactant. These data are supplemented with data sets collected from the literature. The influence of surfactant headgroup charge, specifically for zwitterionic PFAS, was investigated. The impacts of surfactant counterion for ionic PFAS and the influence of headgroup size for nonionic PFAS were also investigated. In addition, the influence of solution ion composition, ionic strength, and pH was examined. The impact of co-solutes, specifically ethanol, humic acid, and trichloroethene, was also examined, as well as the behavior of PFAS mixtures and fluorocarbon-hydrocarbon surfactant mixtures. The data were interpreted within the framework of a QSPR model recently developed to predict fluid-fluid interfacial adsorption coefficients (Ki) of PFAS. The results demonstrate that all of the factors investigated have some degree of impact on Ki values. Thus, the composition of soil-pore water and groundwater is likely to affect the magnitude of PFAS adsorption at air-water and organic liquid-water interfaces. However, the influence on Ki of most of the factors investigated is small for lower PFAS concentrations (less than ∼1-10 mg/L). Hence, their impacts on fluid-fluid interfacial adsorption are likely to be relatively minor at the low PFAS concentrations representative of many environmental systems, especially compared to the impact of other factors such as fluid saturations, porous-medium properties, and PFAS molecular structure. The results of this study indicate that the revised QSPR model provides reasonable first-order predictions of Ki for a wide range of PFAS in environmental systems.
Collapse
Affiliation(s)
- Mark L Brusseau
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg, USA; Hydrology and Atmospheric Sciences Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg, USA.
| | - Sarah Van Glubt
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg, USA
| |
Collapse
|
13
|
Hanafy NAN, El-Kemary M, Leporatti S. Micelles Structure Development as a Strategy to Improve Smart Cancer Therapy. Cancers (Basel) 2018; 10:E238. [PMID: 30037052 PMCID: PMC6071246 DOI: 10.3390/cancers10070238] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Micelles as colloidal suspension have attracted considerable attention due to their potential use for both cancer diagnosis and therapy. These structures have proven their ability to deliver poorly water-soluble anticancer drugs, improve drug stability, and have good penetration and site-specificity, leading to enhance therapeutic efficacy. Micelles are composed of hydrophobic and hydrophilic components assembled into nanosized spherical, ellipsoid, cylindrical, or unilamellar structures. For their simple formation, they are widely studied, either by using opposite polymers attachment consisting of two or more block copolymers, or by using fatty acid molecules that can modify themselves in a rounded shape. Recently, hybrid and responsive stimuli nanomicelles are formed either by integration with metal nanoparticles such as silver, gold, iron oxide nanoparticles inside micelles or by a combination of lipids and polymers into single composite. Herein, through this special issue, an updated overview of micelles development and their application for cancer therapy will be discussed.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Sohag Cancer Center, Sohag 82511, Egypt.
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | | |
Collapse
|
14
|
Khan AM, Bashir S, Shah A, Nazar MF, Rahman HMA, Shah SS, Khan AY, Khan AR, Shah F. Spectroscopically probing the effects of Holmium(III) based complex counterion on the dye-cationic surfactant interactions. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Zhang C, Yang L, Zhao K, Chen Z, Xiao JX. Effect of counterions on anionic fluorocarbon surfactant micelles by dielectric spectroscopy. NEW J CHEM 2018. [DOI: 10.1039/c8nj02524j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of counterions on dielectric behaviors of anionic fluorocarbon surfactants solutions was insighted in the frequency of 40–110 MHz. The dielectric increments Δεof all the surfactants can be divided into different groups, the reason was analyzed and the average radiusR̄was calculated according to Grosse's model, which confirmed the reliability of dielectric analysis, and the structure of micelles was proposed as the figure.
Collapse
Affiliation(s)
- CanCan Zhang
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - LiKun Yang
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - KongShuang Zhao
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Zhen Chen
- School of Natural Science
- Anhui Agricultural University
- Hefei 230036
- China
| | - Jin-Xin Xiao
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
16
|
Fameau AL, Cousin F, Saint-Jalmes A. Morphological Transition in Fatty Acid Self-Assemblies: A Process Driven by the Interplay between the Chain-Melting and Surface-Melting Process of the Hydrogen Bonds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12943-12951. [PMID: 29064713 DOI: 10.1021/acs.langmuir.7b02651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In surfactant systems, the major role of the nature of the counterion in the surfactant behavior is well-known. However, the effect of the molar ratio between the surfactant and its counterion is less explored in the literature. We investigated the effect of the molar ratio (R) between 12-hydroxystearic acid (12-HSA) and various alkanolamines as a function of the temperature in aqueous solution from the molecular scale to the mesoscale. By coupling microscopy techniques and small-angle neutron scattering, we showed that 12-HSA self-assembled into multilamellar tubes and transitioned into micelles at a precise temperature. This temperature transition depended on both the molar ratio and the alkyl chain length of the counterion and could be precisely tuned from 20 to 75 °C. This thermal behavior was investigated by differential scanning calorimetry and wide-angle X-ray scattering. We highlighted that the transition at the supramolecular scale between tubes and micelles came from two different mechanisms at the molecular scale as a function of the molar ratio. At low R, with an excess of counterion, the transition came from the chain-melting phenomenon. At high R, with an excess of 12-HSA, the transition came from both the chain-melting process and the surface-melting process of the hydrogen bonds. At the mesoscale, this transition of supramolecular assemblies from tubes to micelles delimited a regime of high bulk viscosity, with a regime of low viscosity.
Collapse
Affiliation(s)
- Anne-Laure Fameau
- Biopolymères Interactions Assemblages, INRA , Rue de la Géraudière, 44316 Nantes, France
| | - Fabrice Cousin
- Laboratoire Léon-Brillouin, CEA Saclay , 91191 Gif-sur-Yvette Cedex, France
| | - Arnaud Saint-Jalmes
- Institut de Physique de Rennes, UMR CNRS 6251-Université Rennes 1 , 35042 Rennes, France
| |
Collapse
|
17
|
McCoy TM, Valiakhmetova A, Pottage MJ, Garvey CJ, Campo LD, Rehm C, Kuryashov DA, Tabor RF. Structural Evolution of Wormlike Micellar Fluids Formed by Erucyl Amidopropyl Betaine with Oil, Salts, and Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12423-12433. [PMID: 27592638 DOI: 10.1021/acs.langmuir.6b01735] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Solutions of extended, flexible cylindrical micelles, often known as wormlike micelles, have great potential as the base for viscoelastic complex fluids in oil recovery, drilling, and lubrication. Here, we study the morphology and nanostructural characteristics of a model wormlike micellar fluid formed from erucyl amidopropyl betaine (EAPB) in water as a function of a diverse range of additives relevant to complex fluid formulation. The wormlike micellar dispersions are extremely oleo-responsive, with even as little as 0.1% hydrocarbon oil causing a significant disruption of the network and a decrease in zero-shear viscosity of around 100-fold. Simple salts have little effect on the local structure of the wormlike micelles but result in the formation of fractal networks at larger length scales, whereas even tiny amounts of small organic species such as phenol can cause unexpected phase transitions. When forming mixtures with other surfactants, a vast array of self-assembled structures are formed, from spheres to ellipsoids, lamellae, and vesicles, offering the ultimate sensitivity in designing formulations with specific nanostructural characteristics.
Collapse
Affiliation(s)
- Thomas M McCoy
- School of Chemistry, Monash University , Clayton 3800, Australia
| | - Alsu Valiakhmetova
- Oil and Petroleum Chemistry Department, Kazan National Research Technological University , Kazan, Russia
| | | | - Christopher J Garvey
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Christine Rehm
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Dmitry A Kuryashov
- Oil and Petroleum Chemistry Department, Kazan National Research Technological University , Kazan, Russia
| | - Rico F Tabor
- School of Chemistry, Monash University , Clayton 3800, Australia
| |
Collapse
|
18
|
Garg P, Kaur G, Chaudhary GR. Transition metal based single chained surfactants: synthesis, aggregation behavior and enhanced photoluminescence properties of fluorescein. RSC Adv 2016. [DOI: 10.1039/c6ra21811c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Four different transition metal based surfactants were synthesized. The effect of presence of metal as a part of counter ion on the aggregation behaviour of metallosurfactants and on the photophysical properties of fluorescein was explored.
Collapse
Affiliation(s)
- Preeti Garg
- Department of Chemistry
- Centre of Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Gurpreet Kaur
- Department of Chemistry
- Centre of Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Ganga Ram Chaudhary
- Department of Chemistry
- Centre of Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| |
Collapse
|