1
|
de Jesus CG, da Rocha Rodrigues R, da Silva CAM, Péres LO. Artificial neural networks in the modeling of the catalytic activity of a biosensor composed of conjugated polymers and urease. Anal Bioanal Chem 2024; 416:1217-1227. [PMID: 38180497 DOI: 10.1007/s00216-023-05114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Thin films of conjugated polymer and enzyme can be used to unravel the interaction between components in a biosensor. Using artificial neural networks (ANNs) improves data interpretability and helps construct models with great capacity for classifying and processing information. The present work used kinetic data from the catalytic activity of urease immobilized in different conjugated polymers to create ANN models using time, substrate concentration, and absorbance as input variables since the models had absorbance in a posterior instant as output value to explore the predictivity of the ANNs. The performance of the models was evaluated by Pearson's correlation coefficient (ρ) and mean squared error (MSE) values. After the learning process, a series of new experiments were performed to verify the generality of the models. As the main results, the best ANN model presented 0.9980 and 3.0736 × 10-5 for ρ and MSE, respectively. For the simulation step, intermediary values of substrate concentration were used. The mean absolute percentage error (MAPE) values were 3.34, 3.07, and 3.78 for 12 mM, 22 mM, and 32 mM concentrations, respectively. Overall, with the simulations, it was possible to ascertain the interpolatory capacity of the model, which has a learning mechanism based on absorbance and time as variables. Thus, the potential of ANNs would be in their use in pre-evaluations, helping to determine the substrate concentration at which there is higher catalytic activity or in determining the linear range of the sensor.
Collapse
Affiliation(s)
- Cléber Gomes de Jesus
- Laboratory of Hybrid Materials, Federal University of São Paulo, Diadema, SP, Brazil
| | | | | | - Laura Oliveira Péres
- Laboratory of Hybrid Materials, Federal University of São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
2
|
de Jesus CG, da Rocha Rodrigues R, Caseli L, Péres LO. Conducting polymers modulating the catalytic activity of urease in thin composite films. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Chalmpes N, Patila M, Kouloumpis A, Alatzoglou C, Spyrou K, Subrati M, Polydera AC, Bourlinos AB, Stamatis H, Gournis D. Graphene Oxide-Cytochrome c Multilayered Structures for Biocatalytic Applications: Decrypting the Role of Surfactant in Langmuir-Schaefer Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26204-26215. [PMID: 35608556 DOI: 10.1021/acsami.2c03944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Graphene, a two-dimensional single-layer carbon allotrope, has attracted tremendous scientific interest due to its outstanding physicochemical properties. Its monatomic thickness, high specific surface area, and chemical stability render it an ideal building block for the development of well-ordered layered nanostructures with tailored properties. Herein, biohybrid graphene-based layer-by-layer structures are prepared by means of conventional and surfactant-assisted Langmuir-Schaefer layer deposition techniques, whereby cytochrome c molecules are accommodated within ordered layers of graphene oxide. The biocatalytic activity of the as-developed nanobio-architectures toward the enzymatic oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and decolorization of pinacyanol chloride is tested. The results show that the multilayer structures exhibit high biocatalytic activity and stability in the absence of surfactant molecules during the deposition of the monolayers.
Collapse
Affiliation(s)
- Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Antonios Kouloumpis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Christina Alatzoglou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Mohammed Subrati
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki C Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | | | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
5
|
da Rocha Rodrigues R, da Silva RLCG, Caseli L, Péres LO. Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Adv Colloid Interface Sci 2020; 285:102277. [PMID: 32992077 DOI: 10.1016/j.cis.2020.102277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/01/2022]
Abstract
Initially developed for classic systems composed of fatty acids and phospholipids, the Langmuir and Langmuir-Blodgett (LB) techniques allow the fabrication of nanometer-scale devices at self-assembly interfaces with high control over the thickness and molecular architecture. Their application in the research and production of new plastic materials has grown considerably over the past few decades due to the efficiency of conjugated polymers (CPs) for the production of light-emitting diodes, flexible displays, solar cells, and other photoelectronic devices. The structuring of polymers at different interfaces is not trivial as this class of macromolecules can undergo through different processes of folding/unfolding, which hinders the formation of stable Langmuir monolayers and, consequently, the production of Langmuir-Blodgett films. With these ideas in mind, the present article aims to review a series of elements related to the formation of stable Langmuir and Langmuir-Blodgett films of CPs, especially those based on poly(phenylene vinylene)s, polyfluorenes, and polythiophenes. This review is divided into two parts where we first discuss the formation of neat CP films, and then the strategies for the formation of stable CP films based on the co-immobilization with fatty acids, other polymers, and enzymes as mixed films.
Collapse
Affiliation(s)
- Rebeca da Rocha Rodrigues
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | | | - Luciano Caseli
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil.
| | - Laura Oliveira Péres
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of São Paulo, Diadema, São Paulo, Brazil
| |
Collapse
|
6
|
Enzyme activity of thiophene-fluorene based-copolymer blended with urease in thin films. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
da Rocha Rodrigues R, Caseli L, Péres LO. Langmuir and Langmuir-Blodgett Films of Poly[(9,9-dioctylfluorene)- co-(3-hexylthiophene)] for Immobilization of Phytase: Possible Application as a Phytic Acid Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10587-10596. [PMID: 32786889 DOI: 10.1021/acs.langmuir.0c01941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, the copolymer poly[(9,9-dioctylfluorene)-co-(3-hexylthiophene)] was employed as a matrix for immobilizing phytase, aiming at the detection of phytic acid. The copolymer was spread on the air-water interface forming Langmuir monolayers and phytase adsorbed from the aqueous subphase. The interactions between the copolymer and the enzyme components were investigated with surface pressure and surface potential-area isotherms, Brewster angle microscopy, and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The enzyme could be incorporated in the monolayers from the aqueous subphase, expanding the copolymer films and maintaining its secondary structure. The polymeric films presented a morphological heterogeneous pattern at the air-water interface because of the ability of their chains to fold and entangle, causing inherent defects in the organization as well as unbalanced lateral distribution at the air-water interface because of the formation of aggregates. The interfacial films were transferred to solid supports as Langmuir-Blodgett films and characterized by PM-IRRAS and scanning electronic microscopy, which showed not only the co-transfer of the enzyme but also the maintenance of their heterogeneous morphological pattern. The enzymatic activity of the blended film was analyzed by UV-vis spectroscopy and allowed the estimation of the value of the Michaelis constant (13.08 mM), demonstrating the feasibility of the system to selectively detect phytic acid for biosensing purposes.
Collapse
Affiliation(s)
- Rebeca da Rocha Rodrigues
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of Sao Paulo (UNIFESP), 210 São Nicolau Street, Diadema, São Paulo, Brazil
| | - Luciano Caseli
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of Sao Paulo (UNIFESP), 210 São Nicolau Street, Diadema, São Paulo, Brazil
| | - Laura Oliveira Péres
- Laboratory of Hybrid Materials, Department of Chemistry, Federal University of Sao Paulo (UNIFESP), 210 São Nicolau Street, Diadema, São Paulo, Brazil
| |
Collapse
|
8
|
Nizar SA, Kobayashi T, Mohd Suah FB. An aminonaphthalene‐based colorimetric and fluorescent sensor for selective recognition of Fe
3+
in water. LUMINESCENCE 2020; 35:1286-1295. [DOI: 10.1002/bio.3890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Syaza Atikah Nizar
- Green Analytical Chemistry Laboratory, School of Chemical Sciences Universiti Sains Malaysia Minden Pulau Pinang Malaysia
| | - Takaomi Kobayashi
- Department of Materials Science and Technology Nagaoka University of Technology 1603‐1 Kamitomioka, Nagaoka Niigata Japan
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences Universiti Sains Malaysia Minden Pulau Pinang Malaysia
- Department of Chemistry Imperial College London Exhibition Road London UK
| |
Collapse
|
9
|
|
10
|
Possarle LHRR, Siqueira Junior JR, Caseli L. Insertion of carbon nanotubes in Langmuir-Blodgett films of stearic acid and asparaginase enhancing the catalytic performance. Colloids Surf B Biointerfaces 2020; 192:111032. [PMID: 32330820 DOI: 10.1016/j.colsurfb.2020.111032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
In this paper, carbon nanotubes (CNT) were adsorbed on stearic acid (SA) Langmuir monolayers to serve as matrices for the incorporation of asparaginase. The interaction between the components at the air-water interface was evaluated by surface pressure-area isotherms, surface potential-area isotherms, polarization-modulation reflection absorption infrared spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The enzyme expanded the monolayers and changed the thermodynamic and electrical properties of the SA-CNT monolayers, as detected with the isotherms. PM-IRRAS spectra showed that the enzyme keeps its secondary structure when adsorbed at the monolayers and also alters the morphology of the air-water interface, as identified with BAM. The hybrid floating films were transferred to solid supports through the Langmuir-Blodgett (LB) technique, and the cotransfer of the enzyme was confirmed with fluorescence spectroscopy. The catalytic activity of asparaginase in the LB films was studied with UV-vis spectroscopy, which showed that the presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity, but also helped conserve its enzyme activity after weeks, showing higher persisting values of activity. UV-vis spectroscopy also showed that the catalytic activity is dependent basically on the enzyme molecules present on the surface of the LB films since multilayer films did not provide a proportional increase of enzyme activity. These results are related to the synergism between the compounds on the active layer, leading to a molecular architecture that allowed the adequate molecular accommodation of the analyte with the catalytic sites of the enzyme, which also preserved the asparaginase activity. This work then demonstrates the feasibility of employing LB films composed of fatty acids, CNT, and enzymes as devices for biosensing applications.
Collapse
Affiliation(s)
| | - José Roberto Siqueira Junior
- Institute of Exact Sciences, Natural and Education, Federal University of Triângulo Mineiro (UFTM), 38064-200 Uberaba, MG, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), 09913-030 Diadema, SP, Brazil.
| |
Collapse
|
11
|
Surface chemistry and spectroscopic studies of the native phenylalanine dehydrogenase Langmuir monolayer at the air/aqueous NaCl interface. J Colloid Interface Sci 2020; 560:458-466. [DOI: 10.1016/j.jcis.2019.10.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023]
|
12
|
Ma Y, Li M, Shi K, Chen Z, Yang B, Rao D, Li X, Ma W, Hou S, Gou G, Yao H. Multiple stimuli-switchable electrocatalysis and logic gates of rutin based on semi-interpenetrating polymer network hydrogel films. NEW J CHEM 2020. [DOI: 10.1039/d0nj03681a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The switching properties of PAA–PDEA films polymerized as a semi-IPN were studied with rutin as a probe and a logic gate was constructed.
Collapse
|
13
|
Araujo FT, Peres LO, Caseli L. Conjugated Polymers Blended with Lipids and Galactosidase as Langmuir-Blodgett Films To Control the Biosensing Properties of Nanostructured Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7294-7303. [PMID: 31081634 DOI: 10.1021/acs.langmuir.9b00536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The structure of enzymes must be conserved when incorporated in nanoelectronic devices because their activity determines the function of the device as sensors. Among the systems that can retain their conformational structures, Langmuir-Blodgett (LB) films can be useful to exploit the construction of bioelectronic devices organized at the molecular level because biological and polymeric materials can be coupled as ultrathin films for biosensors and actuators. In this paper, we immobilized a β-galactosidase enzyme in the LB films of stearic acid and the conjugated polymer poly[(9,9-dioctylfluorene)- co-thiophene]. After the characterization of the floating films using tensiometry, vibrational spectroscopy, and Brewster angle microscopy, they were transferred to solid supports as LB films, and the catalytic activity of the enzyme could be preserved as analyzed using UV-vis spectroscopy. We noted that the presence of a supramolecular structure formed in the LB films not only conserved the enzyme activity but also exhibited regular and distinctive output signals in all molecular architectures employed in this work. These results are related to the synergism between the compounds on the active layer associated with a surface morphology that facilitated the analyte diffusion because of an adequate molecular accommodation of all components. This work then demonstrates the viability of employing LB films composed of lipids, enzymes, and synthetic polymers as devices for biosensing applications.
Collapse
Affiliation(s)
| | | | - Luciano Caseli
- Federal University of Sao Paulo , Diadema 09913-030 , Sao Paulo , Brazil
| |
Collapse
|
14
|
Rodrigues RT, Morais PV, Nordi CSF, Schöning MJ, Siqueira JR, Caseli L. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3082-3093. [PMID: 29397738 DOI: 10.1021/acs.langmuir.7b04317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.
Collapse
Affiliation(s)
- Raul T Rodrigues
- Institute of Environmental, Chemical and Pharmaceutical Sciences , Federal University of São Paulo (UNIFESP) , 09913-030 Diadema , São Paulo , Brazil
| | - Paulo V Morais
- Institute of Exact Sciences, Natural and Education , Federal University of Triângulo Mineiro (UFTM) , 38064-200 Uberaba , Minas Gerais , Brazil
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Chemistry Institute , São Paulo State University , 14800-900 Araraquara , São Paulo , Brazil
| | - Cristina S F Nordi
- Institute of Environmental, Chemical and Pharmaceutical Sciences , Federal University of São Paulo (UNIFESP) , 09913-030 Diadema , São Paulo , Brazil
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies (INB) , FH Aachen, Campus Jülich , 52428 Jülich , Germany
- Institute of Complex Systems (ICS-8) , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - José R Siqueira
- Institute of Exact Sciences, Natural and Education , Federal University of Triângulo Mineiro (UFTM) , 38064-200 Uberaba , Minas Gerais , Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences , Federal University of São Paulo (UNIFESP) , 09913-030 Diadema , São Paulo , Brazil
| |
Collapse
|
15
|
Wang Y, Wen G, Pispas S, Yang S, You K. Effects of subphase pH, temperature and ionic strength on the aggregation behavior of PnBA-b-PAA at the air/water interface. J Colloid Interface Sci 2018; 512:862-870. [DOI: 10.1016/j.jcis.2017.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
16
|
CASELI LUCIANO. Enzymes immobilized in Langmuir-Blodgett films: Why determining the surface properties in Langmuir monolayer is important? ACTA ACUST UNITED AC 2018; 90:631-644. [DOI: 10.1590/0001-3765201720170453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
|
17
|
Ghorbani M, Mahmoodzadeh F, Nezhad-Mokhtari P, Hamishehkar H. A novel polymeric micelle-decorated Fe 3O 4/Au core–shell nanoparticle for pH and reduction-responsive intracellular co-delivery of doxorubicin and 6-mercaptopurine. NEW J CHEM 2018; 42:18038-18049. [DOI: 10.1039/c8nj03310b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The synergistic antitumor activity against MCF-7 cells was confirmed by co-delivery of doxorubicin and 6-mercaptopurine via dual pH/reduction-responsive nanoparticles.
Collapse
Affiliation(s)
- Marjan Ghorbani
- Stem Cell Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | | | | - Hamed Hamishehkar
- Drug Applied Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| |
Collapse
|
18
|
Zhang S, Bisterfeld C, Bramski J, Vanparijs N, De Geest BG, Pietruszka J, Böker A, Reinicke S. Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-d-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates. Bioconjug Chem 2017; 29:104-116. [PMID: 29182313 DOI: 10.1021/acs.bioconjchem.7b00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.
Collapse
Affiliation(s)
- Shuhao Zhang
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Carolin Bisterfeld
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Julia Bramski
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | - Alexander Böker
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Stefan Reinicke
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
19
|
Altıkatoğlu Yapaöz M, Destanoğlu A. Urease-Dextran complexes with enhanced enzymatic activity and stability. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1403614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Melda Altıkatoğlu Yapaöz
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Chemistry, Davutpasa Campus Esenler, Istanbul, TURKEY
| | - Azra Destanoğlu
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Chemistry, Davutpasa Campus Esenler, Istanbul, TURKEY
| |
Collapse
|
20
|
Davaran S, Ghamkhari A, Alizadeh E, Massoumi B, Jaymand M. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, "schizophrenic" micellization, and its performance as an anticancer drug delivery nanosystem. J Colloid Interface Sci 2016; 488:282-293. [PMID: 27837719 DOI: 10.1016/j.jcis.2016.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
A novel pH- and thermo-responsive ABC triblock copolymer {poly[(2-succinyloxyethyl methacrylate)-b-(N-isopropylacrylamide)-b-[(N-4-vinylbenzyl),N,N-diethylamine]]} [P(SEMA-b-NIPAAm-b-VEA)] was successfully synthesized via reversible addition of fragmentation chain transfer (RAFT) polymerization technique. The molecular weights of PHEMA, PNIPAAm, and PVEA segments in the synthesized triblock copolymer were calculated to be 10,670, 6140, and 9060gmol-1, respectively, from proton nuclear magnetic resonance (1H NMR) spectroscopy. The "schizophrenic" self-assembly behavior of the synthesized P(SEMA-b-NIPAAm-b-VEA) triblock copolymer under pH and thermal stimulus were investigated by means of 1H NMR and ultraviolet-visible (UV-vis) spectroscopies as well as dynamic light scattering (DLS) and zeta potential (ξ) measurements. The doxorubicin hydrochloride (DOX)-loading capacity, and stimuli-responsive drug release ability of the synthesized triblock copolymer were also investigated. The biocompatibility of the synthesized triblock copolymer was confirmed through the assessing survival rate of breast cancer cell line (MCF7) using MTT assay. In contrast, DOX-loaded triblock copolymer exhibited an efficient anticancer performance in comparison with free DOX verified by MTT and DAPI staining assays. As the results, we envision that the synthesized P(SEMA-b-NIPAAm-b-VEA) triblock copolymer can be applied as an enhanced anticancer drug delivery nanosystem, mainly due to its smart physicochemical and biocompatibility properties.
Collapse
Affiliation(s)
- Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, P.O. Box: 51664-14766, Tabriz, Iran
| | - Aliyeh Ghamkhari
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, P.O. Box: 51548-53431, Tabriz, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran.
| | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|