1
|
Monajati M, Ariafar N, Abedi M, Borandeh S, Tamaddon AM. Immobilization of L-Asparaginase on biofunctionalized magnetic graphene oxide nanocomposite: A promising approach for Enhanced Stability and reusability. Heliyon 2024; 10:e40072. [PMID: 39559208 PMCID: PMC11570291 DOI: 10.1016/j.heliyon.2024.e40072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
The application of the amidohydrolase enzyme, L-asparaginase (ASNase), as a biocatalyst in the food and pharmaceutical industries has garnered significant interest. However, challenges such as hypersensitivity reactions, limited stability, and reusability under various operational conditions have hindered its cost-effective utilization. This paper introduces a novel nano-support for ASNase immobilization, namely the nanocomposite of iron oxide magnetic nanoparticles and amino acid-decorated graphene oxide (GO-Asp-Fe3O4). Characterization using FTIR spectroscopy, FE-SEM, and TEM microscopy revealed the homogeneous distribution of iron oxide nanoparticles on the surface of GO sheets. The effects of carrier functionalization and carrier-to-protein ratio on the immobilization of ASNase were studied to optimize the immobilization conditions. The magnetized nanocomposite of ASNase exhibited a 4.4-fold lower Michaelis-Menten constant (Km), suggesting an enhanced affinity for the substrate. The immobilized ASNase demonstrated two to eight times higher thermostability compared to the free enzyme and showed an extremely extended pH stability range. Furthermore, the immobilized enzyme retained over 80 % of its initial bioactivity after eight repeated reaction cycles. These findings suggest that the immobilization of ASNase on GO-Asp- Fe3O4 nanocomposite could be a viable option for industrial applications.
Collapse
Affiliation(s)
- Maryam Monajati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Ariafar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Zare A, Barzegar M, Rostami E, Moosavi-Zare AR. Fabrication of a novel graphene oxide based magnetic nanocomposite and its usage as a highly effectual catalyst for the construction of N, N'-alkylidene bisamides. RSC Adv 2024; 14:25235-25246. [PMID: 39139253 PMCID: PMC11320193 DOI: 10.1039/d4ra04136d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
At first, a novel graphene oxide-based magnetic nanocomposite namely Si-propyl-functionalized N 1,N 1,N 2,N 2-tetramethylethylenediamine-N 1,N 2-diium hydrogen sulfate anchored to graphene oxide-supported Fe3O4 (nano-[GO@Fe3O4@R-NHMe2][HSO4]) was fabricated. After full characterization of the nanocomposite, its catalytic performance was examined for the solvent-free construction of N,N'-alkylidene bisamides from aryl aldehydes (1 eq.) and primary aromatic and aliphatic amides (2 eq.), in which the products were acquired in short times (15-30 min) and high to excellent yields (89-98%). Nano-[GO@Fe3O4@R-NHMe2][HSO4] could be magnetically isolated form the reaction medium, and reused three times without remarkable loss of catalytic activity.
Collapse
Affiliation(s)
- Abdolkarim Zare
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University Bushehr 75169 Iran
| | - Marziyeh Barzegar
- Department of Chemistry, Payame Noor University PO Box 19395-4697 Tehran Iran
| | - Esmael Rostami
- Department of Chemistry, Payame Noor University PO Box 19395-4697 Tehran Iran
| | - Ahmad Reza Moosavi-Zare
- Department of Chemical Engineering, Hamedan University of Technology Hamedan 65155 Iran
- Chemistry Department, College of Sciences, Shiraz University Shiraz 71946-84795 Iran
| |
Collapse
|
3
|
Zhang W, Zhang M, Song J, Zhang Y, Nian B, Hu Y. Spacer arm of ionic liquids facilitated laccase immobilization on magnetic graphene enhancing its stability and catalytic performance. CHEMOSPHERE 2024; 362:142735. [PMID: 38950743 DOI: 10.1016/j.chemosphere.2024.142735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
To fulfill the requirements of environmental protection, a magnetically recoverable immobilized laccase has been developed for water pollutant treatment. In order to accomplish this objective, we propose a polydopamine-coated magnetic graphene material that addresses the challenges associated with accumulation caused by electrostatic interactions between graphene and enzyme molecules, which can lead to protein denaturation and inactivation. To achieve this, we present a polydopamine-coated magnetic graphene material that binds to the enzyme molecule through flexible spacer arms formed by ionic liquids. The immobilized laccase exhibited a good protective effect on laccase and showed a high stability and recycling ability. Laccase-ILs-PDA-MGO has a wider pH and temperature range and retains about 80% of its initial activity even after incubation at 50 °C for 2 h, which is 2.2 times more active than free laccase. Furthermore, the laccase-ILs-PDA-MGO exhibited a remarkable removal efficiency of 97.0% and 83.9% toward 2,4-DCP and BPA within 12 h at room temperature. More importantly, laccase-ILs-PDA-MGO can be recovered from the effluent and used multiple times for organic pollutant removal, while maintaining a relative removal efficiency of 80.6% for 2,4-DCP and 81.4% for BPA after undergoing seven cycles. In this study, a strategy for laccase immobilization by utilizing ILs spacer arms to modify GO aims to provide valuable insights into the advancement of efficient enzyme immobilization techniques and the practical application of immobilized enzymes in wastewater treatment.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Jifei Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Wu Y, Zhang X, Liu C, Tian L, Zhang Y, Zhu M, Qiao W, Wu J, Yan S, Zhang H, Bai H. Adsorption Behaviors and Mechanism of Phenol and Catechol in Wastewater by Magnetic Graphene Oxides: A Comprehensive Study Based on Adsorption Experiments, Mathematical Models, and Molecular Simulations. ACS OMEGA 2024; 9:15101-15113. [PMID: 38585111 PMCID: PMC10993371 DOI: 10.1021/acsomega.3c09346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
This study provides a comprehensive analysis of the adsorption behaviors and mechanisms of phenol and catechol on magnetic graphene oxide (MGO) nanocomposites based on adsorption experiments, mathematical models, and molecular simulations. Through systematic experiments, the influence of various parameters, including contact time, pH conditions, and ionic strength, on the adsorption efficacy was comprehensively evaluated. The optimal contact time for adsorption was identified as 60 min, with the observation that an increase in inorganic salt concentration adversely affected the MGOs' adsorption capacity for both phenol and catechol. Specifically, MGOs exhibited a superior adsorption performance under mildly acidic conditions. The adsorption isotherm was well represented by the Langmuir model, suggesting monolayer coverage and finite adsorption sites for both pollutants. In terms of adsorption kinetics, a pseudo-first-order kinetic model was the most suitable for describing phenol adsorption, while catechol adsorption conformed more closely to a pseudo-second-order model, indicating distinct adsorption processes for these two similar compounds. Furthermore, this research utilized quantum chemical calculations to decipher the interaction mechanisms at the molecular level. Such calculations provided both a visual representation and a quantitative analysis of the interactions, elucidating the underlying physical and chemical forces governing the adsorption phenomena. The findings could not only offer crucial insights for the treatment of coal industrial wastewater containing phenolic compounds with bridging macroscopic observations with microscopic theoretical explanations but also advance the understanding of material-pollutant interactions in aqueous environments.
Collapse
Affiliation(s)
- Yuhua Wu
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xi Zhang
- College
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Caizhu Liu
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Lina Tian
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yufan Zhang
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Meilin Zhu
- College
of Basic Medical Sciences, Ningxia Medical
University, Yinchuan 750004, China
| | - Weiye Qiao
- College
of Chemistry and Chemical Engineering, Xingtai
University, Xingtai 054001, China
| | - Jianbo Wu
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Shu Yan
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hui Zhang
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hongcun Bai
- State
Key Laboratory of High-efficiency Utilization of Coal and Green Chemical
Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
5
|
Mahdavi M, Ghasemzadeh MA, Javadi A. Synthesis of ZIF-8/ZnFe 2O 4/GO-OSO 3H nanocomposite as a superior and reusable heterogeneous catalyst for the preparation of pyrimidine derivatives and investigation of their antimicrobial activities. Heliyon 2024; 10:e26339. [PMID: 38420459 PMCID: PMC10900959 DOI: 10.1016/j.heliyon.2024.e26339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
In this report, we synthesized some pyrimidine derivatives by multi-component reaction of urea, benzaldehydes, and 1,3-indandione in the presence of ZIF-8/ZnFe2O4/GO-OSO3H nanocomposite under reflux conditions. Initially, graphene oxide was prepared from graphite, and then it was sulfonated using ClOSO3H. Next, GO-OSO3H nanosheets were used to support ZIF-8/ZnFe2O4 nanostructure. The construction of the synthesized structure was established using different spectral techniques such as X-ray crystallography (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX/Mapping), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET). The present method provides various benefits including the efficiency of outcomes, easy separation of the catalyst, and excellent yield of the products within short reaction times. Moreover, the antibacterial activities of pyrimidine derivatives were investigated via the agar-well diffusion method on gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria and the obtained results illustrated reasonable effects.
Collapse
Affiliation(s)
- Maryam Mahdavi
- Department of Chemistry, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Ali Javadi
- Department of Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
6
|
Zhang W, Zhang Y, Lu Z, Nian B, Yang S, Hu Y. Enhanced stability and catalytic performance of laccase immobilized on magnetic graphene oxide modified with ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118975. [PMID: 37716172 DOI: 10.1016/j.jenvman.2023.118975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Graphite oxide (GO) is an excellent laccase immobilization material. However, the electrostatic interaction between graphene leads to the accumulation of GO, as well as the interaction with the surface of enzyme molecules causing protein denaturation and deactivation, which limits its further industrial application. In this study, the ionic liquids (ILs) modification strategy was proposed to improve the stability and catalytic performance of immobilized laccase. The laccase-ILs-MGO exhibited remarkable enzymatic properties, with significant enhancements in organic solvent tolerance, thermal and operational stability. The laccase-ILs-MGO system exhibited a remarkable removal efficiency of 95.5% towards 2,4-dichlorophenol (2,4-DCP) within 12 h and maintained over 70.0% removal efficiency after seven reaction cycles. In addition, the efficient elimination of other phenolic compounds and recalcitrant polycyclic aromatic hydrocarbons could also be accomplished. Molecular dynamics simulation and molecular docking studies demonstrated that immobilized laccase exhibited superior structural rigidity and stronger hydrogen bond interactions with substrates compared to free laccase, which was beneficial for the stability of both the laccase and substrate degradation efficiency. Therefore, this study proposed a simple and practical strategy for modifying GO with ILs, providing novel insights into developing efficient enzyme immobilization techniques.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yifei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shipin Yang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
7
|
Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Boussetta A, Ablouh EH, Mbarki M, Grimi N, El Achaby M, Moubarik A. Bio-based functionalized adsorptive polymers for sustainable water decontamination: A systematic review of challenges and real-world implementation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122349. [PMID: 37562526 DOI: 10.1016/j.envpol.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The overwhelming concerns of water pollution, industrial discharges and environmental deterioration by various organic and inorganic substances, including dyes, heavy metals, pesticides, pharmaceuticals, and detergents, intrinsically drive the search for urgent and efficacious decontamination techniques. This review illustrates the various approaches to remediation, their fundamentals, characteristics and demerits. In this manner, the advantageous implementation of nature-based adsorbents has been outlined and discussed. Different types of lignocellulosic compounds (cellulose, lignin, chitin, chitosan, starch) have been introduced, and the most used biopolymeric materials in bioremediation have been highlighted; their merits, synthesis methods, properties and performances in aqueous medium decontamination have been described. The literature assessment reveals the genuine interest and dependence of academic and industrial fields to valorize biopolymers in the adsorption of various hazardous substances. Yet, the full potential of this approach is still confined by certain constraints, such as the lack of reliable, substantial, and efficient extraction of biopolymers, as well as their modest and inconsistent physicochemical properties. The futuristic reliance on such biomaterials in all fields, rather than adsorption, is inherently reliable on in-depth investigations and understanding of their features and mechanisms, which can guarantee a real-world application and green technologies.
Collapse
Affiliation(s)
- Meriem Kasbaji
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mehdi Mennani
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mustapha Oubenali
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Anass Ait Benhamou
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco; Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco; Materials Sciences and Process Optimization Laboratory, Faculty of Science Semlalia, Cadi Ayyad University, 40000, Marrakech, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Mohamed Mbarki
- Engineering in Chemistry and Physics of Matter Laboratory, Faculty of Science and Technologies, Sultan Moulay Slimane University, PB: 523, Beni Mellal, Morocco
| | - Nabil Grimi
- Sorbonne Université, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR), Centre de Recherches Royallieu, CS 60 319, 60 203s, Compiègne Cedex, France
| | - Mounir El Achaby
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Lot 660 - Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, PB: 592, Beni Mellal, Morocco.
| |
Collapse
|
8
|
Designing a new ligand based on pyridine for immobilization of gold nanoparticles on reduced magnetic graphene oxide: a new catalyst for the reduction of nitro compounds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Kumari P, Disha, Nayak MK, Dhruwe D, Patel MK, Mishra S. Synthesis and Characterization of Sulfonated Magnetic Graphene-Based Cation Exchangers for the Removal of Methylene Blue from Aqueous Solutions. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Poonam Kumari
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Disha
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Manoj K. Nayak
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Dhirendra Dhruwe
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Manoj K. Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Manufacturing Science and Instrumentation, CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh160030, India
| | - Sunita Mishra
- Materials Science and Sensor Applications, CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30-C, Chandigarh160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
10
|
Zadeh MMA, Rostami E, Zare SH. Graphene oxide functionalized diethanolamine sulfate as a novel, highly efficient and sustainable catalyst for the synthesis of 8-aryl-7H-acenaphtho[1,2-d] imidazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Copolymer-type magnetic graphene oxide with dual-function for adsorption of variety of dyes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Al-Nami SY, Al-Qahtani SD, Snari RM, Ibarhiam SF, Alfi AA, Aldawsari AM, El-Metwaly NM. Preparation of photoluminescent and anticorrosive epoxy paints immobilized with nanoscale graphene from sugarcane bagasse agricultural waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60173-60188. [PMID: 35419683 DOI: 10.1007/s11356-022-20111-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Sugarcane bagasse agricultural waste has been one of the most common solid pollutants worldwide. Thus, introducing a simple method to convert sugarcane bagasse into value-added materials has been highly significant. Herein, we develop a simple and green strategy to reprocess sugarcane bagasse as a starting material for the preparation of graphene oxide nanosheets toward the preparation of novel photoluminescent, hydrophobic, and anticorrosive epoxy nanocomposite coatings integrated with lanthanide-doped aluminate nanoparticles. Environmentally friendly graphene oxide (GO) nanostructures were provided by a single-step preparation procedure from sugarcane bagasse (SCB) agricultural waste using ferrocene-based oxidation under muffled conditions. The oxidized SCB nanostructures were applied as a drier, anticorrosion, and crosslinking agent for epoxy coatings. Different concentrations of pigment phosphor were applied onto the epoxy coating. The generated epoxy-graphene-aluminate (EGA) paints were then coated onto mild steel. The hydrophobic properties and hardness as well as resistance to scratch of the EGA paints were examined. The transparency and colorimetric screening of the EGA nanocomposite paints were determined by the absorption spectral analysis and CIE Lab parameters. The luminescent translucent paints demonstrated a bright green emission at 520 nm when excited at 372 nm. The anticorrosion properties of the painted steel submerged in NaCl(aq) were inspected by the electrochemical impedance spectral (EIS) method. The EGA paints with phosphor (11% w/w) exhibited the most distinct anti-corrosion properties and long-persistent luminescence. The produced paints displayed high durability and photostability.
Collapse
Affiliation(s)
- Samar Y Al-Nami
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Saham F Ibarhiam
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Afrah M Aldawsari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, 21955, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt.
| |
Collapse
|
13
|
Chinnappa K, Karuna Ananthai P, Srinivasan PP, Dharmaraj Glorybai C. Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58121-58132. [PMID: 35364789 DOI: 10.1007/s11356-022-19917-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, Curcubita maxima leaves are used as a novel source for green synthesis of reduced graphene oxide - silver nanoparticle composite in a single pot. Characterization of the novel phyto source-driven composite was performed by UV-visible spectroscopy, Fourier transform infrared analysis, X-ray diffraction analysis, and field emission scanning electron microscopic methods. The assessment of degradation effect of chlorpyrifos by the synthesized nanocomposite was performed. The photocatalytic activity of the composite was demonstrated through two different processes as adsorption under room temperature and photocatalysis in the presence of sunlight. Different parameters such as pH, time, photocatalyst dose and pesticide concentration were optimized. The adsorption isotherms governing the photocatalytic adsorption process were investigated to predict the adsorption capacity of the synthesized nanocomposite. In addition, the results of antimicrobial activity of the nanocomposite against gram-positive, gram-negative bacteria and antifungal activity were also been found to be highly promising to utilize this composite for the removal of microbial contaminations in wastewater treatment.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, - 600119, Tamil Nadu, India.
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, - 602117, Chennai, Tamil Nadu, India
| | | |
Collapse
|
14
|
Alboghbeish M, Larki A, Saghanezhad SJ. Effective removal of Pb(II) ions using piperazine-modified magnetic graphene oxide nanocomposite; optimization by response surface methodology. Sci Rep 2022; 12:9658. [PMID: 35688868 PMCID: PMC9187642 DOI: 10.1038/s41598-022-13959-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/31/2022] [Indexed: 12/07/2022] Open
Abstract
In this research, the piperazine-modified magnetic graphene oxide (Pip@MGO) nanocomposite was synthesized and utilized as a nano-adsorbent for the removal of Pb(II) ions from environmental water and wastewater samples. The physicochemical properties of Pip@MGO nanocomposite was characterized by X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDAX), Thermo-gravimetric analysis (TGA), Vibrating Sample Magnetometery (VSM) and Fourier-transform infrared spectroscopy (FT-IR) analysis. In this method, the batch removal process were designed by response surface methodology (RSM) based on a central composite design (CCD) model. The results indicated that the highest efficiency of Pb(II) removal was obtained from the quadratic model under optimum conditions of prominent parameters (initial pH 6.0, adsorbent dosage 7 mg, initial concentration of lead 15 mg L−1 and contact time 27.5 min). Adsorption data showed that lead ions uptake on Pip@MGO nanocomposite followed the Langmuir isotherm model equation and pseudo-second order kinetic model. High adsorption capacity (558.2 mg g−1) and easy magnetic separation capability showed that the synthesized Pip@MGO nanocomposite has great potential for the removal of Pb(II) ions from contaminated wastewaters.
Collapse
Affiliation(s)
- Mousa Alboghbeish
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | | |
Collapse
|
15
|
Olatunde OC, Onwudiwe DC. UV-light assisted activation of persulfate by rGO-Cu3BiS3 for the degradation of diclofenac. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
16
|
Taherian Z, Khataee A, Han N, Orooji Y. Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Dash BS, Lu YJ, Chen HA, Chuang CC, Chen JP. Magnetic and GRPR-targeted reduced graphene oxide/doxorubicin nanocomposite for dual-targeted chemo-photothermal cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112311. [PMID: 34474862 DOI: 10.1016/j.msec.2021.112311] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
Herein, we design a rGO-based magnetic nanocomposite by decorating rGO with citrate-coated magnetic nanoparticles (CMNP). The magnetic rGO (mrGO) was modified by phospholipid-polyethylene glycol to prepare PEGylated mrGO, for conjugating with gastrin-releasing peptide receptor (GRPR)-binding peptide (mrGOG). The anticancer drug doxorubicin (DOX) was bound to mrGO (mrGOG) by π-π stacking for drug delivery triggered by the low pH value in the endosome. The mrGOG showed enhanced photothermal effect under NIR irradiation, endorsing its role for dual targeted DOX delivery. With efficient DOX release in the endosomal environment and heat generation from light absorption in the NIR range, mrGOG/DOX could be used for combination chemo-photothermal therapy after intracellular uptake by cancer cells. We characterized the physico-chemical as well as biological properties of the synthesized nanocomposites. The mrGOG is stable in biological buffer solution, showing high biocompatibility and minimum hemolytic properties. Using U87 glioblastoma cells, we confirmed the magnetic drug targeting effect in vitro for selective cancer cell killing. The peptide ligand-mediated targeted delivery increases the efficiency of intracellular uptake of both nanocomposite and DOX up to ~3 times due to the over-expressed GRPR on U87 surface, leading to higher cytotoxicity. The increased cytotoxicity using mrGOG over mrGO was shown from a decreased IC50 value (0.70 to 0.48 μg/mL) and an increased cell apoptosis rate (19.8% to 47.1%). The IC50 and apoptosis rate changed further to 0.19 μg/mL and 76.8% in combination with NIR laser irradiation, with the photothermal effect supported from upregulation of heat shock protein HSP70 expression. Using U87 tumor xenograft model created in nude mice, we demonstrated that magnetic guidance after intravenous delivery of mrGOG/DOX could significantly reduce tumor size and prolong animal survival over free DOX and non-magnetic guided groups. Augmented with NIR laser treatment for 5 min, the anti-cancer efficacy significantly improves with elevated cell apoptosis and reduced cell proliferation. Together with safety profiles from hematological as well as major organ histological analysis of treated animals, the mrGOG nanocomposite is an effective nanomaterial for combination chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
18
|
A New Supported Manganese-Based Coordination Complex as a Nano-Catalyst for the Synthesis of Indazolophthalazinetriones and Investigation of Its Antibacterial Activity. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new magnetic supported manganese-based coordination complex (Fe3O4@SiO2@CPTMS@MBOL@ Mn) was prepared in consecutive stages and characterized via various techniques (VSM, SEM, TEM, XRD, FT-IR, EDX, TG-DTA, and ICP). To evaluate its application, it was used for synthesis of divers Indazolophthalazinetriones in a simple procedure via the one-pot three-component condensation reaction of aldehydes, dimedone, and phthalhydrazide in ethanol under reflux conditions. The Mn catalyst can be recycled without any noticeable loss in catalytic activity. Additionally, the antibacterial properties of the nano-catalyst were studied against some bacterial strains.
Collapse
|
19
|
Arora A, Oswal P, Singh S, Nautiyal D, Rao GK, Kumar S, Singh AK, Kumar A. Organoselenium ligand-stabilized copper nanoparticles: Development of a magnetically separable catalytic system for efficient, room temperature and aqueous phase reduction of nitroarenes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Hosseini MS, Masteri-Farahani M. Phenyl sulfonic acid functionalized graphene-based materials: Synthetic approaches and applications in organic reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Maleki A, Ghassemi M. Clean One-Pot Multicomponent Synthesis of Pyrans Using a Green and Magnetically Recyclable Heterogeneous Nanocatalyst. SYNOPEN 2021. [DOI: 10.1055/a-1469-6721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractCopper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde, and a β-ketoester in ethanol at room temperature. The nanoparticles were characterized by FT-IR, EDX, SEM, TGA, and DTG analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, using a green solvent under environmentally friendly reaction conditions, ease of catalyst recovery and recyclability, no need for column chromatography and good to excellent yields are advantages of this protocol.
Collapse
|
22
|
Mosadegh M, Mahdavi H. Synthesis and characterization of novel PES/GO-g-PSS mixed matrix membranes with outstanding antifouling and dye rejection properties. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02236-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Ghavidel H, Mirza B, Soleimani-Amiri S. A Novel, Efficient, and Recoverable Basic Fe 3O 4@C Nano-Catalyst for Green Synthesis of 4 H-Chromenes in Water via One-Pot Three Component Reactions. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1607413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hassan Ghavidel
- Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
24
|
Niakan M, Masteri-Farahani M, Karimi S, Shekaari H. Hydrophilic role of deep eutectic solvents for clean synthesis of biphenyls over a magnetically separable Pd-catalyzed Suzuki-Miyaura coupling reaction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review. Carbohydr Polym 2021; 251:116986. [PMID: 33142558 PMCID: PMC8648070 DOI: 10.1016/j.carbpol.2020.116986] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials owing to their outstanding structural features, abundant availability, and nontoxicity, ease of modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. Water is one of the world's foremost environmental stress concerns. Nanomaterial-adorned polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic metals and organic/inorganic pollutants from wastewater. This review encompasses recent advancements, trends and challenges for natural biopolymers assembled from renewable resources for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-derived (nano)materials.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U. S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
26
|
Mohammadi Ziarani G, Jamasbi N, Mohajer F. Recent Achievements in the Synthesis of Heterocyclic Compounds by Phthalhydrazide-Based Multicomponent Reactions. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Graphene Oxide as a Nanocarrier for Biochemical Molecules: Current Understanding and Trends. Processes (Basel) 2020. [DOI: 10.3390/pr8121636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of an advanced and efficient drug delivery system with significant improvement in its efficacy and enhanced therapeutic value is one of the critical challenges in modern medicinal biology. The integration of nanomaterial science with molecular and cellular biology has helped in the advancement and development of novel drug delivery nanocarrier systems with precision and decreased side effects. The design and synthesis of nanocarriers using graphene oxide (GO) have been rapidly growing over the past few years. Due to its remarkable physicochemical properties, GO has been extensively used in efforts to construct nanocarriers with high specificity, selectivity, and biocompatibility, and low cytotoxicity. The focus of this review is to summarize and address recent uses of GO-based nanocarriers and the improvements as efficient drug delivery systems. We briefly describe the concepts and challenges associated with nanocarrier systems followed by providing critical examples of GO-based delivery of drug molecules and genes. Finally, the review delivers brief conclusions on the current understanding and prospects of nanocarrier delivery systems.
Collapse
|
28
|
Matloubi Moghaddam F, Eslami M, Hoda G. Cysteic acid grafted to magnetic graphene oxide as a promising recoverable solid acid catalyst for the synthesis of diverse 4H-chromene. Sci Rep 2020; 10:20968. [PMID: 33262479 PMCID: PMC7708834 DOI: 10.1038/s41598-020-77872-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
4H-chromenes play a significant role in natural and pharmacological products. Despite continuous advances in the synthesis methodology of these compounds, there is still a lack of a green and efficient method. In this study, we have designed cysteic acid chemically attached to magnetic graphene oxide (MNPs·GO-CysA) as an efficient and reusable solid acid catalyst to synthesize 4H-chromene skeletons via a one-pot three components reaction of an enolizable compound, malononitrile, an aldehyde or isatin, and a mixture of water-ethanol as a green solvent. This new heterogeneous catalyst provides desired products with a good to excellent yield, short time, and mild condition. This procedure presents an environmentally friendly approach for the synthesis of a great number of 4H-chromene derivatives.
Collapse
Affiliation(s)
- Firouz Matloubi Moghaddam
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran.
| | - Mohammad Eslami
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Golfamsadat Hoda
- Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| |
Collapse
|
29
|
Sharma M, Sondhi H, Krishna R, Srivastava SK, Rajput P, Nigam S, Joshi M. Assessment of GO/ZnO nanocomposite for solar-assisted photocatalytic degradation of industrial dye and textile effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32076-32087. [PMID: 32506402 DOI: 10.1007/s11356-020-08849-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
An ecofriendly and solar light-responsive graphene oxide wrapped zinc oxide nanohybrid has been synthesized hydrothermally using lemon and honey respectively as chelating and complexing agents. By tuning the reaction conditions, a heterostructure between GO and ZnO has been formed during synthesis. The photocatalytic activity of the synthesized nanohybrid was investigated by degradation of hazardous organic textile dye (methylene blue) as well as wastewater under natural solar light. The nanohybrid exhibited excellent photocatalytic activity towards degradation (~ 89%) of methylene blue (MeB). Furthermore, along with decolorization, 71% of mineralization was also achieved. Interestingly, the nanohybrid has been found to be reusable up to 4 cycles without significant loss of photocatalytic activity. Along with this, the physicochemical parameters of the wastewater generated from textile industry have been also monitored before and after exposure to nanohybrid. The results revealed significant reduction in chemical oxygen demand (COD) (96.33%), biochemical oxygen demand (BOD) (96.23%), and total dissolved solids (TDS) (20.85%), suggesting its potential applicability in textile wastewater treatment.
Collapse
Affiliation(s)
- Mahima Sharma
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India
| | - Harpreet Sondhi
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India
| | - Richa Krishna
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India
| | | | - Parasmani Rajput
- Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313, India.
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, 201313, India.
| |
Collapse
|
30
|
A green solid acid catalyst 12-tungstophosphoric acid H3[PW12O40] supported on g-C3N4 for synthesis of quinoxalines. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Tarrahi R, Fathi Z, Seydibeyoğlu MÖ, Doustkhah E, Khataee A. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int J Biol Macromol 2020; 146:596-619. [DOI: 10.1016/j.ijbiomac.2019.12.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
|
32
|
Nasrollahzadeh M, Nezafat Z, Gorab MG, Sajjadi M. Recent progresses in graphene-based (photo)catalysts for reduction of nitro compounds. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110758] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Naikwade A, Jagadale M, Kale D, Gajare S, Bansode P, Rashinkar G. Intramolecular O‐arylation using nano‐magnetite supported
N
‐heterocyclic carbene‐copper complex with wingtip ferrocene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Megha Jagadale
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Dolly Kale
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Shivanand Gajare
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Prakash Bansode
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| | - Gajanan Rashinkar
- Department of ChemistryShivaji University Kolhapur 416004, M.S. India
| |
Collapse
|
34
|
Hosseini SA, Shokri Z, Karami S. Adsorption of Cu(II) to mGO@Urea and its application for the catalytic reduction of 4-NP. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Kothandapani J, Ganesan SS. Concise Review on the Applications of Magnetically Separable Brønsted Acidic Catalysts. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190312152209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Magnetically separable Brønsted acidic catalysts combine the advantages of
high efficiency of homogeneous Brønsted acidic catalyst with the ease of magnetic
separation from the reaction medium. In addition to their ease of separation, the
magnetically separable Brønsted acidic catalysts also possess high stability towards air
and moisture, facile functionalization and tunable hydrophobic properties. This review
portrays the applications of sulfonic acid anchored γ -Fe2O3 or Fe3O4 nanoparticles,
magnetic core encapsulated acid functionalized silica or mesoporous nanoparticles,
functionalized ionic liquid coated acidic magnetically separable nanoparticles and
miscellaneous magnetically separable Brønsted acidic nanoparticles in diverse organic
transformations. In addition, the merits of magnetically separable Brønsted acid
nanocatalyst are also summarized and compared with the traditional homogeneous/heterogeneous Brønsted
acidic catalysts.
Collapse
Affiliation(s)
- Jagatheeswaran Kothandapani
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Subramaniapillai S. Ganesan
- Department of Chemistry, School of Chemical and Biotechnology; SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
36
|
Sabaghnia N, Janmohammadi M, Dalili M, Karimi Z, Rostamnia S. Euphorbia leaf extract-assisted sustainable synthesis of Au NPs supported on exfoliated GO for superior activity on water purification: reduction of 4-NP and MB. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11719-11729. [PMID: 30806928 DOI: 10.1007/s11356-019-04437-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In the present work, the effect of graphene oxide (GO) architecture and synthesis of gold nanoparticles (AuNPs) on the surface of GO by using Euphorbia leaf extract was investigated. The as-synthesized catalyst was utilized for reduction of 4-nitrophenol (4-NP) and methylene-blue (MB). The ethanol/water extract of the leaves of Euphorbia was found as a non-toxic, suitable, eco-friendly natural reducing agent in one-step generation of Au nanoparticles onto the GO. The catalyst was characterized by different analysis such as atomic force microscopy, powder X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, SEM-mapping, transmission electron microscopy, and atomic absorption spectrometry. The high catalytic performance of the surfactant exfoliated gold-GO (SE-AuNPs/GO) towards the reduction of 4-NP to 4-aminophenol (4-AP) and reduction of MB to leucomethylene blue (LMB) under mild conditions, in water and at room temperature, was exhibited. Graphical abstract.
Collapse
Affiliation(s)
- Naser Sabaghnia
- Department of Plant Production and Genetic, Faculty of Agriculture, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.
| | - Mohsen Janmohammadi
- Department of Plant Production and Genetic, Faculty of Agriculture, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.
| | - Maryam Dalili
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box 55181-83111, Maragheh, Iran
| | - Ziba Karimi
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box 55181-83111, Maragheh, Iran.
| |
Collapse
|
37
|
Mahmoudi‐GomYek S, Azarifar D, Ghaemi M, Keypour H, Mahmoudabadi M. Fe
3
O
4
‐supported Schiff‐base copper (II) complex: A valuable heterogeneous nanocatalyst for one‐pot synthesis of new pyrano[2,3‐
b
]pyridine‐3‐carboxamide derivatives. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Davood Azarifar
- Department of ChemistryBu‐Ali Sina University 65178 Hamedan Iran
| | - Masoumeh Ghaemi
- Department of ChemistryBu‐Ali Sina University 65178 Hamedan Iran
| | - Hassan Keypour
- Department of ChemistryBu‐Ali Sina University 65178 Hamedan Iran
| | | |
Collapse
|
38
|
Rohaniyan M, Davoodnia A, Beyramabadi SA, Khojastehnezhad A. Phosphomolybdic acid supported on Schiff base functionalized graphene oxide nanosheets: Preparation, characterization, and first catalytic application in the multi‐component synthesis of tetrahydrobenzo[
a
]xanthene‐11‐ones. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4881] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marziyeh Rohaniyan
- Department of Chemistry, Mashhad BranchIslamic Azad University Mashhad Iran
| | | | - S. Ali Beyramabadi
- Department of Chemistry, Mashhad BranchIslamic Azad University Mashhad Iran
| | - Amir Khojastehnezhad
- Young Researchers and Elite Club, Mashhad BranchIslamic Azad University Mashhad Iran
| |
Collapse
|
39
|
Z-Schemed WO3/rGO/SnIn4S8 Sandwich Nanohybrids for Efficient Visible Light Photocatalytic Water Purification. Catalysts 2019. [DOI: 10.3390/catal9020187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Semiconductor photocatalysis has received much attention as a promising technique to solve energy crisis and environmental pollution. This work demonstrated the rational design of “sandwich” WO3/rGO/SnIn4S8 (WGS) Z-scheme photocatalysts for efficient purification of wastewater emitted from tannery and dyeing industries. Such materials were prepared by a combined protocol of the in situ precipitation method with hydrothermal synthesis, and structurally characterized by XRD, SEM, HRTEM, UV-vis DRS, and PL spectroscopy. Results showed that the Z-schemed nanohybrids significantly enhanced the photocatalytic activity compared to the single component photocatalysts. An optimized case of the WGS-2.5% photocatalysts exhibited the highest Cr(VI) reduction rate, which was ca. 1.8 and 12 times more than those of pure SnIn4S8 (SIS) and WO3, respectively. Moreover, the molecular mechanism of the enhanced photocatalysis was clearly revealed by the radical-trapping control experiments and electron paramagnetic resonance (ESR) spectroscopy. The amount of superoxide and hydroxyl radicals as the major reactive oxygen species performing the redox catalysis was enhanced significantly on the Z-scheme WGS photocatalysts, where the spatial separation of photoinduced electron–hole pairs was therefore accelerated for the reduction of Cr(VI) and degradation of Rhodamine B (RhB). This study provides a novel strategy for the synthesis of all-solid-state Z-scheme photocatalysts for environmental remediation.
Collapse
|
40
|
Bahadorikhalili S, Ansari S, Hamedifar H, Ma'mani L, Babaei M, Eqra R, Mahdavi M. Mo (CO) 6
-assisted Pd-supported magnetic graphene oxide-catalyzed carbonylation-cyclization as an efficient way for the synthesis of 4(3 H
)-quinazolinones. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Samira Ansari
- CinnaGen Medical Biotechnology Research Center; Alborz University of Medical Sciences; Karaj Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center; Alborz University of Medical Sciences; Karaj Iran
| | - Leila Ma'mani
- Department of Nanotechnology; Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| | - Mohsen Babaei
- Institute of Mechanics; Iranian Space Research Center; Shiraz Iran
| | - Rahim Eqra
- Institute of Mechanics; Iranian Space Research Center; Shiraz Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Centre; Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Science; Tehran Iran
| |
Collapse
|
41
|
Palladium Comprising Dicationic Bipyridinium Supported Periodic Mesoporous Organosilica (PMO): Pd@Bipy–PMO as an Efficient Hybrid Catalyst for Suzuki–Miyaura Cross-Coupling Reaction in Water. Catalysts 2019. [DOI: 10.3390/catal9020140] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed a novel catalysts consisting of periodic mesoporous organosilica functionalized with bipyridinium ionic liquid supported palladium. The physiochemical properties of the hybrid catalyst were investigated using Fourier transform infrared spectroscopy, small angle X–ray powder diffraction, field emission scanning electron microscope, transmission electron microscope, nitrogen adsorption–desorption analyses, and atomic absorption spectroscopy. The stabilized Pd species inside the mesochannels provided good catalytic efficiency for the Suzuki–Miyaura coupling reactions in water. The activity of the designed catalysts retained for several consecutive recycle runs. The stability, recoverability, and reusability of the designed heterogeneous catalyst were also studied under various reaction conditions.
Collapse
|
42
|
Mesoporous SBA-15/PIDA as a Dendrimer Zwitterionic Amino Acid-Type Organocatalyst for Three-Component Indazolophtalazine Synthesis. Catal Letters 2019. [DOI: 10.1007/s10562-018-2643-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Kalhor M, Zarnegar Z. Fe3O4/SO3H@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives. RSC Adv 2019; 9:19333-19346. [PMID: 35519374 PMCID: PMC9064959 DOI: 10.1039/c9ra02910a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, SO3H@zeolite-Y was synthesized by the reaction of chlorosulfonic acid with zeolite-NaY under solvent-free conditions, which was then supported by Fe3O4 nanoparticles to give SO3H@zeolite-Y (Fe3O4/SO3H@zeolite-Y) magnetic nanoparticles. Several techniques were used to evaluate the physical and chemical characterizations of the zeolitic nanostructures. Fe3O4-loaded sulfonated zeolite was applied as a novel multi-functional zeolite catalyst for the synthesis of imidazole and perimidine derivatives. This efficient methodology has some advantages such as good to excellent yield, high purity of products, reusability of nanocatalyst, simple reaction conditions, environmental friendliness and an economical chemical procedure from the viewpoint of green chemistry. Fe3O4/SO3H@zeolite-Y was applied as a novel, effective and environmentally friendly magnetic nanocatalyst for the synthesis of imidazole and perimidine scaffolds.![]()
Collapse
Affiliation(s)
- Mehdi Kalhor
- Department of Chemistry
- University of Payame Noor
- Tehran
- Iran
| | - Zohre Zarnegar
- Department of Chemistry
- University of Payame Noor
- Tehran
- Iran
| |
Collapse
|
44
|
Zeynizadeh B, Gilanizadeh M. Synthesis and characterization of a magnetic graphene oxide/Zn–Ni–Fe layered double hydroxide nanocomposite: an efficient mesoporous catalyst for the green preparation of biscoumarins. NEW J CHEM 2019. [DOI: 10.1039/c9nj04718b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel magnetic graphene oxide/Zn–Ni–Fe-layered double hydroxide was prepared and then utilized as an efficient heterogeneous as well mesoporous catalyst towards the synthesis of biscoumarin materials.
Collapse
|
45
|
Mahdjoub S, Boulcina R, Yildirim M, Lakehal S, Boulebd H, Debache A. A silver nanoparticles-catalyzed efficient three-component synthesis of polysubstituted 4H-chromenylphosphonates and their antioxidant activity. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1484487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Mahdjoub
- Laboratory of Synthesis of Molecules with Biological Interest, Frères Mentouri-Constantine University, Constantine, Algeria
| | - Raouf Boulcina
- Laboratory of Synthesis of Molecules with Biological Interest, Frères Mentouri-Constantine University, Constantine, Algeria
| | - Muhammet Yildirim
- Department of Chemistry, Faculty of Sciences and Arts, Abant Izzet Baysal University, Bolu, Turkey
| | - Sihem Lakehal
- Higher National School of Biotechnology, Constantine, Algeria
| | - Houssem Boulebd
- Laboratory of Natural Products of Plant Origin and Organic Synthesis, Frères Mentouri-Constantine University, Constantine, Algeria
| | - Abdelmadjid Debache
- Laboratory of Synthesis of Molecules with Biological Interest, Frères Mentouri-Constantine University, Constantine, Algeria
| |
Collapse
|
46
|
Fathi Z, Doustkhah E, Rostamnia S, Darvishi F, Ghodsi A, Ide Y. Interaction of Yarrowia lipolytica lipase with dithiocarbamate modified magnetic carbon Fe3O4@C-NHCS2H core-shell nanoparticles. Int J Biol Macromol 2018; 117:218-224. [DOI: 10.1016/j.ijbiomac.2018.05.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023]
|
47
|
Shaikh SKJ, Kamble RR, Somagond SM, Kamble AA, Kumbar MN. One-pot multicomponent synthesis of novel thiazol-2-imines via microwave irradiation and their antifungal evaluation. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1482348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | | | - Shilpa M. Somagond
- Department of Studies in Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - Atulkumar A. Kamble
- Department of Studies in Chemistry, Karnatak University, Dharwad, Karnataka, India
| | - Mahadev N. Kumbar
- Department of Studies in Chemistry, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
48
|
Rimaz M, Mousavi H, Khalili B, Aali F. A green and practical one-pot two-step strategy for the synthesis of symmetric 3,6-diarylpyridazines. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mehdi Rimaz
- Department of Chemistry; Payame Noor University; Tehran Iran
| | - Hossein Mousavi
- Department of Chemistry; Payame Noor University; Tehran Iran
| | - Behzad Khalili
- Department of Chemistry, Faculty of Science; University of Guilan; Rasht Iran
| | - Farkhondeh Aali
- Department of Chemistry; Payame Noor University; Tehran Iran
| |
Collapse
|
49
|
Naeimi H, Farahnak Zarabi M. Gold nanoparticles supported on thiol-functionalized reduced graphene oxide as effective recyclable catalyst for synthesis of tetrahydro-4H-chromenes in aqueous media. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry; University of Kashan; Kashan 87317 I. R. Iran
| | - Maryam Farahnak Zarabi
- Department of Organic Chemistry, Faculty of Chemistry; University of Kashan; Kashan 87317 I. R. Iran
| |
Collapse
|
50
|
Golchin Hosseini H, Rostamnia S. Post-synthetically modified SBA-15 with NH2-coordinately immobilized iron-oxine: SBA-15/NH2-FeQ3 as a Fenton-like hybrid catalyst for the selective oxidation of organic sulfides. NEW J CHEM 2018. [DOI: 10.1039/c7nj02742g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report the synthesis and catalysis of SBA-15 grafted iron-oxine. SBA-15/NH2-FeQ3 showed efficient catalytic activity in sulfide oxidation.
Collapse
Affiliation(s)
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG)
- Department of Chemistry
- University of Maragheh
- Maragheh
- Iran
| |
Collapse
|