1
|
Acosta S, Ojeda-Galván HJ, Quintana M. 2D materials towards energy conversion processes in nanofluidics. Phys Chem Chem Phys 2023; 25:24264-24277. [PMID: 37671413 DOI: 10.1039/d3cp00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hierarchically assembled 2D material membranes are extremely promising platforms for energy conversion processes in nanofluidics. In this perspective, we discuss recent advances in the production of smart 2D material membranes that come close to mimicking biological energy conversion processes and how these efforts translate into the design of water purification systems, artificial photosynthesis, and solar energy conversion devices. As we depict here, 2D material membranes synergistically modulate the intrinsic active sites (nanopores), electron transport, mass transfer, and mechanical and chemical stability aiming at cost-effective and highly efficient smart membranes.
Collapse
Affiliation(s)
- Selene Acosta
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - H Joazet Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - Mildred Quintana
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico.
| |
Collapse
|
2
|
Al-Hetty HRAK, Kadhim MS, Al-Tamimi JHZ, Ahmed NM, Jalil AT, Saleh MM, Kandeel M, Abbas RH. Implications of biomimetic nanocarriers in targeted drug delivery. EMERGENT MATERIALS 2023; 6:1-13. [PMID: 36686331 PMCID: PMC9846706 DOI: 10.1007/s42247-023-00453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Nanomaterials and nanostructures have shown fascinating performances in various biomedicine fields, from cosmetic to cancer diagnosis and therapy. Engineered nanomaterials can encapsulate both lipophilic and hydrophilic substances/drugs to eliminate their limitations in the free forms, such as low bioavailability, multiple drug administration, off-target effects, and various side effects. Moreover, it is possible to deliver the loaded cargo to the desired site of action using engineered nanomaterials. One approach that has made nanocarriers more sophisticated is the "biomimetic" concept. In this scenario, biomolecules (e.g., natural proteins, peptides, phospholipids, cell membranes) are used as building blocks to construct nanocarriers and/or modify agents. For instance, it has been reported that specific cells tend to migrate to a particular site during specific circumstances (e.g., inflammation, tumor formation). Employing the cell membrane of these cells as a coating for nanocarriers confers practical targeting approaches. Accordingly, we introduce the biomimetic concept in the current study, review the recent studies, challenge the issues, and provide practical solutions.
Collapse
Affiliation(s)
| | - Maitha Sameer Kadhim
- Department of Prevention Dentistry, Al-Rafidain University College, Baghdad, Iraq
| | | | - Nahid Mahmood Ahmed
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001 Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, 31982 Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516 Egypt
| | - Ruaa H. Abbas
- Communication Technical Engineering, Collage of Technical Engineering, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
3
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
4
|
Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3020. [PMID: 34835783 PMCID: PMC8626004 DOI: 10.3390/nano11113020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.
Collapse
Affiliation(s)
- Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Department of Physics, Moscow Region State University, Very Voloshinoy Street, 24, 141014 Mytishi, Russia
| | - Marianna V. Kharlamova
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/2, 1060 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria;
| | - Maxim P. Nikitin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
| |
Collapse
|
5
|
Zhang Y, Zhou T, Li J, Xu N, Cai M, Zhang H, Zhao Q, Wang S. Au Catalyzing Control Release NO in vivo and Tumor Growth-Inhibiting Effect in Chemo-Photothermal Combination Therapy. Int J Nanomedicine 2021; 16:2501-2513. [PMID: 33824588 PMCID: PMC8018432 DOI: 10.2147/ijn.s270466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Aim to obtain a NO donor that can control released NO in vivo with the high efficacy of tumor suppression and targeting, a nanoplatform consisting of FA-Fe3O4@mSiO2-Au/DOX was constructed. METHODS In vitro, the nanoplatform catalyzed NO's release with the maximum value of 4.91 μM within 60 min at 43°C pH=5.0, which was increased by 1.14 times when the temperature was 37°C. In vivo, 11.7 μg Au in the tumor tissue was found to catalyze S-nitrosoglutathione continuously, and 54 μM NO was checked out in the urine. RESULTS AND DISCUSSION The high concentration of NO was found to increase the apoptotic rate and to reduce tumor proliferation. In the chemo-photothermal combination therapy, the tumor inhibition rate was increased up to 94.3%, and Au's contribution from catalyzing NO release NO was 8.17%.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Tianfu Zhou
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Jian Li
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Nuo Xu
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Mingze Cai
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Hong Zhang
- Van ’T Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1098 XH, the Netherlands
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| |
Collapse
|
6
|
Britto Hurtado R, Cortez-Valadez M, Aragon-Guajardo J, Cruz-Rivera J, Martínez-Suárez F, Flores-Acosta M. One-step synthesis of reduced graphene oxide/gold nanoparticles under ambient conditions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
7
|
Lin R, Liang Z, Yang C, Shi W, Cui F, Zhao Z. Selective and enhanced adsorption of the monosubstituted benzenes on the Fe-modified MCM-41: Contribution of the substituent groups. CHEMOSPHERE 2019; 237:124546. [PMID: 31549658 DOI: 10.1016/j.chemosphere.2019.124546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
The Fe-modified spherical meso-silica MCM-41 was synthesized via the base precipitation with Fe3+/urea, and the structure was characterized. Especially, the selective and enhanced adsorption characters and mechanism of the monosubstituted benzenes were investigated. The results showed that Fe modification increased the specific surface area of MCM-41 and retained the mesopore structure. Importantly, adsorption of the monosubstituted benzenes indicated that the adsorption behavior of the monosubstituted benzenes on the Fe-modified MCM-41 (Fe-MCM-41) was a monolayer adsorption on the heterogeneous surfaces, and it showed great selective adsorption towards aniline, and the maximum adsorption capacity of the Fe-MCM-41 towards aniline was 17.5 and 7.9 times of nitrobenzene and phenol. Additionally, the adsorption process and the isotherm of aniline conformed to the pseudo-second order kinetic mode and the Langmuir mode. The maximum adsorption capacity of the Fe-MCM-41 and the pure MCM-41 towards aniline were 17.9 and 1.9 mg g-1, which indicated that the Fe modification significantly enhanced the adsorption capacity of MCM-41 towards aniline. Mechanism analysis reveals that the selective adsorption of the monosubstituted benzenes was attributed to the electron donating/withdrawing capacity of the substituent groups on benzene ring. Due to the electron withdrawing capacity of O atom, the exposed Fe atom of the ferric oxide loaded in the Fe-MCM-41 gave a strong electrophilic surface, which electrostatically interacted with the electron donating group (amino) in aniline.
Collapse
Affiliation(s)
- Ruya Lin
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Zhijie Liang
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; School Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Chun Yang
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; School Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; School Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; School Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhiwei Zhao
- School of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; School Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
8
|
Biomimetic nanostructures/cues as drug delivery systems: a review. MATERIALS TODAY CHEMISTRY 2019. [DOI: 10.1016/j.mtchem.2019.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Gold nanorods based multicompartment mesoporous silica composites as bioagents for highly efficient photothermal therapy. J Colloid Interface Sci 2019; 549:9-15. [DOI: 10.1016/j.jcis.2019.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
|
10
|
Lin Z, Li S, Huang J. Natural Cellulose Derived Nanocomposites as Anodic Materials for Lithium‐Ion Batteries. CHEM REC 2019; 20:187-208. [DOI: 10.1002/tcr.201900030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Zehao Lin
- Department of ChemistryZhejiang University, Hangzhou Zhejiang 310027 China
| | - Shun Li
- School of EngineeringZhejiang A& F University, Hangzhou Zhejiang 311300 China
| | - Jianguo Huang
- Department of ChemistryZhejiang University, Hangzhou Zhejiang 310027 China
| |
Collapse
|
11
|
Functionalized nanographene oxide in biomedicine applications: bioinspired surface modifications, multidrug shielding, and site-specific trafficking. Drug Discov Today 2019; 24:749-762. [DOI: 10.1016/j.drudis.2019.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/16/2018] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
|
12
|
Li H, Zhao Y, Jia Y, Qu C, Li J. Covalently assembled dopamine nanoparticle as an intrinsic photosensitizer and pH-responsive nanocarrier for potential application in anticancer therapy. Chem Commun (Camb) 2019; 55:15057-15060. [DOI: 10.1039/c9cc08294h] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A covalently assembled dopamine nanoparticle is constructed to serve as an intrinsic photosensitizer and pH-responsive drug nanocarrier for combined PDT and chemotherapy.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering
- Xi’an Shiyou University
- Xi’an 710065
- China
| | - Yuanyuan Zhao
- College of Chemistry and Chemical Engineering
- Xi’an Shiyou University
- Xi’an 710065
- China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering
- Xi’an Shiyou University
- Xi’an 710065
- China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
13
|
de Melo-Diogo D, Lima-Sousa R, Alves CG, Costa EC, Louro RO, Correia IJ. Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf B Biointerfaces 2018; 171:260-275. [DOI: 10.1016/j.colsurfb.2018.07.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/28/2022]
|
14
|
Shu Y, Song R, Zheng A, Huang J, Chen M, Wang J. Thermo/pH dual-stimuli-responsive drug delivery for chemo-/photothermal therapy monitored by cell imaging. Talanta 2018; 181:278-285. [DOI: 10.1016/j.talanta.2018.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 02/05/2023]
|
15
|
Wang J, Zhu C, Han J, Han N, Xi J, Fan L, Guo R. Controllable Synthesis of Gold Nanorod/Conducting Polymer Core/Shell Hybrids Toward in Vitro and in Vivo near-Infrared Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12323-12330. [PMID: 29595952 DOI: 10.1021/acsami.7b16784] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photothermal therapy (PTT) is a minimally invasive tumor treatment technology, and is regarded as a potential anticancer strategy because of its targeted destruction and low toxicity. Specifically, near-infrared light-induced PTT has attracted intriguing interest because of the high transparency of tissue, blood, and water. However, effective PTT generally requires the assistance of photothermal agents. Gold nanorods (GNRs) and conducting polymer are often used as photothermal materials because of their high absorption efficiency and photothermal conversion efficiency. Herein, we combined GNRs with poly( o-methoxyaniline) (POMA, a polyaniline derivative) to form GNRs/POMA core/shell hybrids through the surfactant-assisted chemical oxidative polymerization route and studied their photothermal conversion properties. The configuration of GNRs/POMA core/shell hybrids has been precisely controlled through adjusting the monomer concentration, and the relationship between morphology and absorption band of GNRs/POMA core/shell hybrids has been revealed. Finally, the in vitro and in vivo experiments were performed, and the results indicated that the GNRs/POMA core/shell hybrids with optimized absorbance at around 808 nm exhibited the best performance on photothermal therapy under 808 nm NIR laser irradiation.
Collapse
|
16
|
Su YY, Yao H, Zhao S, Tian W, Liu WF, Wang SJ, Liu Y, Tian Y, Zhang XD, Teng ZG, Lu GM, Zhang LJ. Ag-HPBs by a coating-etching strategy and their derived injectable implants for enhanced tumor photothermal treatment. J Colloid Interface Sci 2018; 512:439-445. [PMID: 29096104 DOI: 10.1016/j.jcis.2017.10.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023]
Abstract
Herein, we demonstrate a coating-etching strategy to directly synthesize hollow Prussian blue (PB) nanocubes with well-dispersed Ag nanoparticles (denoted as Ag-HPB). The method is accomplished by introduction of PB precursors, K3Fe(CN)6 and Fe3+ into a reaction system containing AgNO3 and ascorbic acid, in which a series reactions contain formation of Ag nanoparticles, coating of PB on the nanoparticles, and diffusion of Ag into the PB frameworks occur. The strategy for preparation of the hollow structured Ag-HPB is intrinsically simple and does not require pre-preparation of any sacrificial templates or toxic etching agents. The obtained Ag-HPB nanocubes possess uniform size (69 nm), well-defined hollow structure, strong near-infrared photothermal conversion capacity, and excellent photoacoustic and magnetic resonance imaging abilities. Furthermore, an injectable photothermal implants are prepared for the first time by mixing the Ag-HPB nanocubes with clinically used biological glue, which significantly enhance photothermal anti-tumor efficacy, showing great potential for clinical tumor treatment.
Collapse
Affiliation(s)
- Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China; Department of Radiology, The First Hospital Affiliated to Soochow University, Suzhou 215006, PR China
| | - Hui Yao
- Department of General Surgery, The First Hospital Affiliated to Soochow University, Suzhou 215006, PR China
| | - Shuang Zhao
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China
| | - Wei Tian
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China
| | - Wen Fei Liu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China
| | - Shou Ju Wang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China
| | - Ying Liu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China
| | - Xiao Dong Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China
| | - Zhao Gang Teng
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 Jiangsu, PR China.
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 Jiangsu, PR China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nangjing 210002, PR China.
| |
Collapse
|
17
|
Green synthesis and characterization of ultrafine copper oxide reduced graphene oxide (CuO/rGO) nanocomposite. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Sheikhpour M, Barani L, Kasaeian A. Biomimetics in drug delivery systems: A critical review. J Control Release 2017; 253:97-109. [PMID: 28322976 DOI: 10.1016/j.jconrel.2017.03.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/19/2022]
Abstract
Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Leila Barani
- Faculty of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Science & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Zhou B, Zhao L, Shen M, Zhao J, Shi X. A multifunctional polyethylenimine-based nanoplatform for targeted anticancer drug delivery to tumors in vivo. J Mater Chem B 2017; 5:1542-1550. [PMID: 32263927 DOI: 10.1039/c6tb02620f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of cost-effective targeted drug delivery systems for cancer chemotherapy still remains a great challenging task. Here, we describe the synthesis and characterization of multifunctional polyethylenimine (PEI) as an effective vehicle to load an anticancer drug doxorubicin (DOX) for in vivo targeted cancer therapy. In this study, PEI was sequentially conjugated with polyethylene glycol (PEG) monomethyl ether, PEGylated folic acid (FA), and fluorescein isothiocyanate (FI). This was followed by the acetylation of the remaining PEI surface amines. The formed FA-targeted multifunctional PEI (FA-mPEI) was used as a vehicle to encapsulate DOX. We show that the formed FA-mPEI/DOX complexes with each PEI encapsulating 6.9 DOX molecules are water dispersible and can sustainably release DOX in a pH-dependent manner, showing a higher release rate under acidic pH conditions than under physiological pH conditions. Furthermore, the complexes display specific therapeutic efficacy to cancer cells in vitro and a subcutaneous tumor model in vivo, and have good organ compatibility. The designed multifunctional PEI may be used as an effective vehicle for targeted cancer chemotherapy.
Collapse
Affiliation(s)
- Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | |
Collapse
|
20
|
Liang Z, Shi W, Zhao Z, Sun T, Cui F. Enhanced removal and adsorption characters of aniline by the inorganically modified mesoporous silica nano-spheres. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Qin C, Fei J, Cui G, Liu X, Fang W, Yang X, Liu X, Li J. Covalent-reaction-induced interfacial assembly to transform doxorubicin into nanophotomedicine with highly enhanced anticancer efficiency. Phys Chem Chem Phys 2017; 19:23733-23739. [DOI: 10.1039/c7cp02543b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By one-pot covalent-reaction-induced interfacial assembly, doxorubicin is facilely transformed into nanophotomedicine with remarkable ability of singlet oxygen generation and greatly improved anticancer efficiency.
Collapse
Affiliation(s)
- Chenchen Qin
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
| | - Ganglong Cui
- Department Chemistry College
- Beijing Normal University
- Beijing 100875
- China
| | - Xiangyang Liu
- Department Chemistry College
- Beijing Normal University
- Beijing 100875
- China
| | - Weihai Fang
- Department Chemistry College
- Beijing Normal University
- Beijing 100875
- China
| | - Xiaoke Yang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
| | - Xingcen Liu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Lab of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|