1
|
Li Z, Zhou H, Liu X, Wang W, Lan D, Wang Y. A novel thermo-responsive phospholipase A 1 with high selectivity and efficiency in enzymatic oil degumming. Food Chem 2024; 456:139624. [PMID: 38850608 DOI: 10.1016/j.foodchem.2024.139624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
The limited availability of phospholipase A1 (PLA1) has posed significant challenges in enzymatic degumming. In this study, a novel PLA1 (UM2) was introduced to address this limitation, which had a unique thermo-responsive ability to switch phospholipase and lipase activities in response to temperature variations. Remarkably, UM2 displayed an unprecedented selectivity under optimized conditions, preferentially hydrolyzing phospholipids over triacylglycerols-a specificity superior to that of commercial PLA1. Moreover, UM2 demonstrated high efficiency in hydrolyzing phospholipids with a predilection for phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A practical application of UM2 on crude flaxseed oil led to a dramatic reduction in phosphorus content, plummeting from an initial 384.06 mg/kg to 4.38 mg/kg. Broadening its industrial applicability, UM2 effectively performed enzymatic degumming for other distinct crude vegetable oils with a unique phospholipid composition. Collectively, these results highlighted the promising application of UM2 in the field of oil degumming.
Collapse
Affiliation(s)
- Zhong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huilin Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd, Foshan 528200, China.
| |
Collapse
|
2
|
Shah H, Zhang C, Khan S, Patil PJ, Li W, Xu Y, Ali A, Liang E, Li X. Comprehensive Insights into Microbial Lipases: Unveiling Structural Dynamics, Catalytic Mechanism, and Versatile Applications. Curr Microbiol 2024; 81:394. [PMID: 39375258 DOI: 10.1007/s00284-024-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Microbial lipases (MLs) are pivotal biocatalysts in lipid biotechnology due to their diverse enzymatic properties and substrate specificity, garnering significant research attention. This comprehensive review explores the significance of MLs in biocatalysis, providing insights into their structure, catalytic domain, and oxyanion hole. The catalytic mechanism is elucidated, highlighting the molecular processes driving their efficiency. The review delves into ML sources, spanning fungi, yeasts, bacteria, and actinomycetes, followed by a discussion on classification and characterization. Emphasizing the scattered findings in the literature, the paper consolidates the latest information on ML applications across various industries, from food and pharmaceuticals to biofuel production and the paper and pulp industry. The review captures the dynamic landscape of ML research, emphasizing their structure-function relationships and practical implications across diverse sectors.
Collapse
Affiliation(s)
- Haroon Shah
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Chengnan Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
| | - Sohail Khan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Prasanna Jagannath Patil
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Akhtiar Ali
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Erhong Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China.
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China.
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China.
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China.
| |
Collapse
|
3
|
Lin S, Zhang Q, Wang Z, Li J. Novel Hybrid Gel-Fiber Membranes as Carriers for Lipase Catalysis Based on Electrospinning and Gelation Technology. Gels 2024; 10:74. [PMID: 38247796 PMCID: PMC10815851 DOI: 10.3390/gels10010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
An excellent oil-water interface is one of the prerequisites for effective lipase catalysis. Therefore, this study aimed to improve lipase activity in terms of catalytic interface optimization. A novel approach for constructing oil-water interfaces was proposed. The structural similarity and the hydrophilic differences between polyvinyl pyrrolidone gel-fiber membranes (GFMs) and poly(lauryl methacrylate) (PLMA) organogel inspired us to hybridize the two to form PVP/PLMA hybrid gel-fiber membranes (HGFMs) based on electrospinning and gelation. The prepared PVP/PLMA-HGFMs were capable of being adopted as novel carriers for lipase catalysis due to their ability to swell both in the aqueous phase (swelling ratio = 187.5%) and the organic phase (swelling ratio = 40.5%). Additionally, Confocal laser scanning microscopy (CLSM) results showed that abundant network pores inside the carriers enabled numerous effective microscopic oil-water interfaces. The catalytic activity of Burkholderia cepacia lipase (BCL) in PVP/PLMA-HGFMs ranged between 1.21 and 8.70 times that of the control ("oil-up/water-down" system) under different experimental conditions. Meanwhile, PVP/PLMA-HGFMs increased lipase activity by about eight times at -20 °C and had good application characteristics at extreme pH conditions.
Collapse
Affiliation(s)
- Shumiao Lin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Q.Z.)
| | - Qianqian Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (S.L.); (Q.Z.)
| | - Ziheng Wang
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China;
| | - Jinlong Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Lankage U, Holt SA, Bridge S, Cornell B, Cranfield CG. Triglyceride-Tethered Membrane Lipase Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37931023 PMCID: PMC10658451 DOI: 10.1021/acsami.3c11767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Sensors that can quickly measure the lipase activity from biological samples are useful in enzyme production and medical diagnostics. However, current lipase sensors have limitations such as requiring fluorescent labels, pH control of buffer vehicles, or lengthy assay preparation. We introduce a sparsely tethered triglyceride substrate anchored off of a gold electrode for the impedance sensing of real-time lipase activity. The tethered substrate is self-assembled using a rapid solvent exchange technique and can form an anchored bilayer 1 nm off the gold electrode. This allows for an aqueous reservoir region, providing access to ions transported through membrane defects caused by triglyceride enzymatic hydrolysis. Electrical impedance spectroscopy techniques can readily detect the decrease in resistance caused by enzymatically induced defects. This rapid and reliable lipase detection method can have potential applications in disease studies, monitoring of lipase production, and as point-of-care diagnostic devices.
Collapse
Affiliation(s)
| | - Stephen A. Holt
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
- Australian
Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Samara Bridge
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
| | - Bruce Cornell
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
- SDx
Surgical Diagnostics Pty Ltd., U6 30-32 Barcoo Street, Roseville, NSW 2069, Australia
| | - Charles G. Cranfield
- School
of Life Sciences, University of Technology
Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Zhang M, Wang P, Jin D, Jian S, Wu J, Huang M, Xie H, Zhao Q, Yang H, Luo P, Yuan H, Xue J, Shen Q. Chain-locked precursor ion scanning based HPLC–MS/MS for in-depth molecular analysis of lipase-catalyzed transesterification of structured phospholipids containing ω-3 fatty acyl chains. Food Chem 2023; 399:133982. [DOI: 10.1016/j.foodchem.2022.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
6
|
Zhang H, Secundo F, Sun J, Mao X. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol Adv 2022; 61:108036. [PMID: 36130694 DOI: 10.1016/j.biotechadv.2022.108036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Functional lipids, mainly ω-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3), are known to have a variety of health benefits. Lipases and phospholipases are widely used to prepare different forms of structured lipids, since biocatalytic methods can be carried out under mild conditions, preserving the quality of the products. On the other hand, many processes still are conducted at high temperatures and with organic solvents, which are conditions unfavorable for the production of nutritional products. This article gives an updated overview of enzyme biocatalysis methods for the preparation of different derivatives containing n-3 PUFAs, including specific reactions, enzyme immobilization research for high-efficiency catalysis, and enzyme engineering technologies (higher selectivity, stability, and activity). Furthermore, advanced control strategies of biocatalytic processes and reactors are presented. The future prospect and opportunities for marine functional lipids are also discussed. Therefore, the obtainment of enzymes endowed with superior properties and the development of optimized processes, still have to be pursued to achieve greener bio-catalyzed processes.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Designer phospholipids – structural retrieval, chemo-/bio- synthesis and isotopic labeling. Biotechnol Adv 2022; 60:108025. [DOI: 10.1016/j.biotechadv.2022.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
|
8
|
Yao W, Liu K, Liu H, Jiang Y, Wang R, Wang W, Wang T. A Valuable Product of Microbial Cell Factories: Microbial Lipase. Front Microbiol 2021; 12:743377. [PMID: 34616387 PMCID: PMC8489457 DOI: 10.3389/fmicb.2021.743377] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
As a powerful factory, microbial cells produce a variety of enzymes, such as lipase. Lipase has a wide range of actions and participates in multiple reactions, and they can catalyze the hydrolysis of triacylglycerol into its component free fatty acids and glycerol backbone. Lipase exists widely in nature, most prominently in plants, animals and microorganisms, among which microorganisms are the most important source of lipase. Microbial lipases have been adapted for numerous industrial applications due to their substrate specificity, heterogeneous patterns of expression and versatility (i.e., capacity to catalyze reactions at the extremes of pH and temperature as well as in the presence of metal ions and organic solvents). Now they have been introduced into applications involving the production and processing of food, pharmaceutics, paper making, detergents, biodiesel fuels, and so on. In this mini-review, we will focus on the most up-to-date research on microbial lipases and their commercial and industrial applications. We will also discuss and predict future applications of these important technologies.
Collapse
Affiliation(s)
- Wentao Yao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kaiquan Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
9
|
Moses ME, Lund PM, Bohr SSR, Iversen JF, Kæstel-Hansen J, Kallenbach AS, Iversen L, Christensen SM, Hatzakis NS. Single-Molecule Study of Thermomyces lanuginosus Lipase in a Detergency Application System Reveals Diffusion Pattern Remodeling by Surfactants and Calcium. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33704-33712. [PMID: 34235926 DOI: 10.1021/acsami.1c08809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipases comprise one of the major enzyme classes in biotechnology with applications within, e.g., baking, brewing, biocatalysis, and the detergent industry. Understanding the mechanisms of lipase function and regulation is therefore important to facilitate the optimization of their function by protein engineering. Advances in single-molecule studies in model systems have provided deep mechanistic insights on lipase function, such as the existence of functional states, their dependence on regulatory cues, and their correlation to activity. However, it is unclear how these observations translate to enzyme behavior in applied settings. Here, single-molecule tracking of individual Thermomyces lanuginosus lipase (TLL) enzymes in a detergency application system allowed real-time direct observation of spatiotemporal localization, and thus diffusional behavior, of TLL enzymes on a lard substrate. Parallelized imaging of thousands of individual enzymes allowed us to observe directly the existence and quantify the abundance and interconversion kinetics between three diffusional states that we recently provided evidence to correlate with function. We observe redistribution of the enzyme's diffusional pattern at the lipid-water interface as well as variations in binding efficiency in response to surfactants and calcium, demonstrating that detergency effectors can drive the sampling of lipase functional states. Our single-molecule results combined with ensemble activity assays and enzyme surface binding efficiency readouts allowed us to deconvolute how application conditions can significantly alter protein functional dynamics and/or surface binding, both of which underpin enzyme performance. We anticipate that our results will inspire further efforts to decipher and integrate the dynamic nature of lipases, and other enzymes, in the design of new biotechnological solutions.
Collapse
Affiliation(s)
- Matias E Moses
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Philip M Lund
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Søren S-R Bohr
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Josephine F Iversen
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Jacob Kæstel-Hansen
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Amalie S Kallenbach
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Lars Iversen
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | | | - Nikos S Hatzakis
- Department of Chemistry & Nano-science Center, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Bohr SSR, Thorlaksen C, Kühnel RM, Günther-Pomorski T, Hatzakis NS. Label-Free Fluorescence Quantification of Hydrolytic Enzyme Activity on Native Substrates Reveals How Lipase Function Depends on Membrane Curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6473-6481. [PMID: 32437165 DOI: 10.1021/acs.langmuir.0c00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipases are important hydrolytic enzymes used in a spectrum of technological applications, such as the pharmaceutical and detergent industries. Because of their versatile nature and ability to accept a broad range of substrates, they have been extensively used for biotechnological and industrial applications. Current assays to measure lipase activity primarily rely on low-sensitivity measurements of pH variations or visible changes of material properties, like hydration, and often require high amounts of proteins. Fluorescent readouts, on the other hand, offer high contrast and even single-molecule sensitivity, albeit they are reliant on fluorogenic substrates that structurally resemble the native ones. Here we present a method that combines the highly sensitive readout of fluorescent techniques while reporting enzymatic lipase function on native substrates. The method relies on embedding the environmentally sensitive fluorescent dye pHrodo and native substrates into the bilayer of liposomes. The charged products of the enzymatic hydrolysis alter the local membrane environment and thus the fluorescence intensity of pHrodo. The fluorescence can be accurately quantified and directly assigned to product formation and thus enzymatic activity. We illustrated the capacity of the assay to report the function of diverse lipases and phospholipases both in a microplate setup and at the single-particle level on individual nanoscale liposomes using total internal reflection fluorescence (TIRF). The parallelized sensitive readout of microscopy combined with the inherent polydispersity in sizes of liposomes allowed us to screen the effect of membrane curvature on lipase function and identify how mutations in the lid region control the membrane curvature-dependent activity. We anticipate this methodology to be applicable for sensitive activity readouts for a spectrum of enzymes where the product of the enzymatic reaction is charged.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Camilla Thorlaksen
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Biophysics, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev 2760, Denmark
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ronja Marie Kühnel
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
| | - Thomas Günther-Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
11
|
Noro J, Castro TG, Cavaco-Paulo A, Silva C. Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from Thermomyces lanuginosus. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00912a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipase fromThermomyces lanuginosusdisplays high affinity for long-chain substrates. The chemical modification of this lipase with isothiocyanates and aldehydes was explored to broadening its specificity to chain-length differentiated substrates.
Collapse
Affiliation(s)
- Jennifer Noro
- Center of Biological Engineering
- Campus de Gualtar
- University of Minho
- Braga
- Portugal
| | - Tarsila G. Castro
- Center of Biological Engineering
- Campus de Gualtar
- University of Minho
- Braga
- Portugal
| | - Artur Cavaco-Paulo
- Center of Biological Engineering
- Campus de Gualtar
- University of Minho
- Braga
- Portugal
| | - Carla Silva
- Center of Biological Engineering
- Campus de Gualtar
- University of Minho
- Braga
- Portugal
| |
Collapse
|
12
|
Bohr SSR, Lund PM, Kallenbach AS, Pinholt H, Thomsen J, Iversen L, Svendsen A, Christensen SM, Hatzakis NS. Direct observation of Thermomyces lanuginosus lipase diffusional states by Single Particle Tracking and their remodeling by mutations and inhibition. Sci Rep 2019; 9:16169. [PMID: 31700110 PMCID: PMC6838188 DOI: 10.1038/s41598-019-52539-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipases are interfacially activated enzymes that catalyze the hydrolysis of ester bonds and constitute prime candidates for industrial and biotechnological applications ranging from detergent industry, to chiral organic synthesis. As a result, there is an incentive to understand the mechanisms underlying lipase activity at the molecular level, so as to be able to design new lipase variants with tailor-made functionalities. Our understanding of lipase function primarily relies on bulk assay averaging the behavior of a high number of enzymes masking structural dynamics and functional heterogeneities. Recent advances in single molecule techniques based on fluorogenic substrate analogues revealed the existence of lipase functional states, and furthermore so how they are remodeled by regulatory cues. Single particle studies of lipases on the other hand directly observed diffusional heterogeneities and suggested lipases to operate in two different modes. Here to decipher how mutations in the lid region controls Thermomyces lanuginosus lipase (TLL) diffusion and function we employed a Single Particle Tracking (SPT) assay to directly observe the spatiotemporal localization of TLL and rationally designed mutants on native substrate surfaces. Parallel imaging of thousands of individual TLL enzymes and HMM analysis allowed us to observe and quantify the diffusion, abundance and microscopic transition rates between three linearly interconverting diffusional states for each lipase. We proposed a model that correlate diffusion with function that allowed us to predict that lipase regulation, via mutations in lid region or product inhibition, primarily operates via biasing transitions to the active states.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Philip M Lund
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Amalie S Kallenbach
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Henrik Pinholt
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Lars Iversen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | - Allan Svendsen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | | | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark.
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
13
|
Function of C-terminal peptides on enzymatic and interfacial adsorption properties of lipase from Gibberella zeae. Biochim Biophys Acta Gen Subj 2018; 1862:2623-2631. [PMID: 30025859 DOI: 10.1016/j.bbagen.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND The crystal structure of lipase from Gibberella zeae (GZEL) indicates that its C-terminal extension is composed of a loop and a α-helix. This structure is unique, possibly providing novel evidence on lipase mechanisms. METHODS Two C-terminally truncated mutants (GZEL-Δ(α-helix) and GZEL-Δ(α-helix+loop)) were constructed. The role of these secondary structure segments on enzymatic activities and interfacial binding properties of GZEL was investigated by using conventional pH-stat method and monomolecular film techniques. In addition, inactive variants (Ser144Ala) of wild-type GZEL and two truncated mutants were constructed and produced specifically for interfacial binding experiments. RESULTS Compared to the wild-type GZEL, lipase and phospholipase activities were significantly decreased in the two mutants. Deletion of the α-helix had great influence on the lipase activity of GZEL, resulting in residual 7.3% activity; the additional deletion of the loop led to 8.1% lipase activity. As for the phospholipase function, residual activities of 63.0% and 35.4% were maintained for GZEL-Δ(α-helix) and GZEL-Δ(α-helix+loop), respectively. Findings obtained with monomolecular film experiments further indicated that the reduction in phospholipase activity occurred with the anionic phospholipid as substrate, but was not seen with zwitterionic phospholipid. Results of the maximum insertion pressure, synergy factor and binding kinetic parameters documented that the α-helix structure of GZEL strongly influence the binding and insertion of enzyme to the phospholipid monolayer. Moreover, the interfacial binding function of α-helix was partly conformed by connecting to the C-terminal of Aspergillus oryzae lipase. GENERAL SIGNIFICANCE Our results provide important information on the understanding of the structure-function relationship of GZEL.
Collapse
|
14
|
Recombinant Lipase from Gibberella zeae Exhibits Broad Substrate Specificity: A Comparative Study on Emulsified and Monomolecular Substrate. Int J Mol Sci 2017; 18:ijms18071535. [PMID: 28718792 PMCID: PMC5536023 DOI: 10.3390/ijms18071535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/02/2017] [Accepted: 07/02/2017] [Indexed: 11/17/2022] Open
Abstract
Using the classical emulsified system and the monomolecular film technique, the substrate specificity of recombinant Gibberella zeae lipase (rGZEL) that originates from Gibberella zeae was characterized in detail. Under the emulsified reaction system, both phospholipase and glycolipid hydrolytic activities were observed, except for the predominant lipase activity. The optimum conditions for different activity exhibition were also determined. Compared with its lipase activity, a little higher ratio of glycolipid hydrolytic activity (0.06) than phospholipase activity (0.02) was found. rGZEL preferred medium chain-length triglycerides, while lower activity was found for the longer-chain triglyceride. Using the monomolecular film technique, we found that the preference order of rGZEL to different phospholipids was 1,2-diacyl-sn-glycero-3-phospho-l-serine (PS) > 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (PG) > 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) > l-α-phosphatidylinositol (PI) > cardiolipin (CL) > 3-sn-phosphatidic acid sodium salt (PA) > l-α-phosphatidylethanolamine (PE), while no hydrolytic activity was detected for sphingomyelin (SM). Moreover, rGZEL showed higher galactolipase activity on 1,2-distearoyimonoglactosylglyceride (MGDG). A kinetic study on the stereo- and regioselectivity of rGZEL was also performed by using three pairs of pseudodiglyceride enantiomers (DDGs). rGZEL presented higher preference for distal DDG enantiomers than adjacent ester groups, however, no hydrolytic activity to the sn-2 position of diglyceride analogs was found. Furthermore, rGZEL preferred the R configuration of DDG enantiomers. Molecular docking results were in concordance with in vitro tests.
Collapse
|