1
|
Kitamoto Y, Cao KLA, Le PH, Abdillah OB, Iskandar F, Ogi T. A Sustainable Approach for Preparing Porous Carbon Spheres Derived from Kraft Lignin and Sodium Hydroxide as Highly Packed Thin Film Electrode Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3540-3552. [PMID: 35258982 DOI: 10.1021/acs.langmuir.1c03489] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A green synthetic strategy to design biomass-derived porous carbon electrode materials with precisely tailored structure and morphology has always been a challenging goal because these materials can fulfill the demands of next-generation supercapacitors and other electrochemical devices. Potassium hydroxide (KOH) is extensively utilized as an activator since it can produce porous carbon with high specific surface area and well-developed porous channels. The exploitation of sodium hydroxide (NaOH) as an activating agent is less referenced in the literature, although it offers some advantages over KOH in terms of low cost, less corrosiveness, and simple handling procedure, all of which are appealing particularly from an industrial viewpoint. The motivation for this present study is to fabricate porous carbon spheres in a sustainable manner via a spray drying approach followed by a carbonization process, using Kraft lignin as the carbon precursor and NaOH as an alternative activation agent instead of the high-cost and high-corrosive KOH for the first time. The structure of carbon particles can be accurately transitioned from a compact to hollow structure, and the surface textural properties can be easily tuned by altering the NaOH concentration. The obtained porous carbon spheres were applied as highly packed thin film electrode materials for supercapacitor devices. The specific capacitance value of porous carbon spheres with a highly compact structure (high packing density) is 66.5 F g-1, which is higher than that of commercial activated carbon and other biomass-derived carbon. This work provides a green processing for producing low-cost and environment-friendly porous carbon spheres from abundant Kraft lignin and important insight for selecting NaOH as an activator to tailor the morphology and structure, which represents an economical and sustainable approach for energy storage devices.
Collapse
Affiliation(s)
- Yasuhiko Kitamoto
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Phong Hoai Le
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Oktaviardi Bityasmawan Abdillah
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
2
|
Yin Y, Liang D, Liu D, Liu Q. Preparation and characterization of three-dimensional hierarchical porous carbon from low-rank coal by hydrothermal carbonization for efficient iodine removal. RSC Adv 2022; 12:3062-3072. [PMID: 35425338 PMCID: PMC8979239 DOI: 10.1039/d1ra08016d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
Low-rank coal, such as Shengli lignite (SL) and Datong bitumite (DT), has abundant reserves and is low in cost. Due to its high moisture content, abundant oxygen-containing groups, high ash content and low calorific value, low-rank coal is mainly used in a low-cost method of direct combustion. For better value-added utilization of SL and DT, a novel strategy has been developed for the preparation of oxygen-rich hierarchical porous carbons (HPCs) by hydrothermal carbonization (HTC), followed by steam activation. In this paper, firstly, the physical and chemical properties of SL and DT were improved by HTC pretreatment, bringing them closer to high rank coal. Then, the effects of HTC pretreatment and activation temperature on the properties of the HPCs were investigated in detail. The results show that the HPCs have mainly microporous structures (the microporosity of 200-SLHPC-900 is 79.58%) based on the N2 adsorption-desorption isotherm analysis and exhibit a higher specific surface area (SSA) and larger pore volume (25.02% and 2.69% improvement for 200-SLHPC-900; 4.93% and 14.25% increase for 200-DTHPC-900, respectively) after HTC pretreatment. The two types of HPCs also present good adsorption performance. The iodine adsorption value of lignite-based HPC presents an increase of 13.72% from 503 mg g-1 to 572 mg g-1, while the value of bitumite-based HPC increases up to 924 mg g-1. A preliminary additional HTC step is therefore an effective method by which to promote the performance of low-rank coal based porous carbon. The process of hydrothermal carbonization and steam activation is a cost-effective and environmentally-friendly preparation method, which omits the use of a chemical activator and reduces the step of alkaline waste liquid discharge compared with the route of carbonization and chemical activation.
Collapse
Affiliation(s)
- Yufeng Yin
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing) Beijing 100083 China
| | - Dingcheng Liang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing) Beijing 100083 China
| | - Deqian Liu
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing) Beijing 100083 China
| | - Qianjun Liu
- Department of Petroleum and Geosystems Engineering, The University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
3
|
Wu Y, Cao JP, Zhuang QQ, Zhao XY, Zhou Z, Wei YL, Zhao M, Bai HC. Biomass-derived three-dimensional hierarchical porous carbon network for symmetric supercapacitors with ultra-high energy density in ionic liquid electrolyte. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137825] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Zhuang QQ, Cao JP, Zhao XY, Wu Y, Zhou Z, Zhao M, Zhao YP, Wei XY. Preparation of layered-porous carbon from coal tar pitch narrow fractions by single-solvent extraction for superior cycling stability electric double layer capacitor application. J Colloid Interface Sci 2020; 567:347-356. [DOI: 10.1016/j.jcis.2020.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
|