1
|
Nikoloudakis E, Coutsolelos AG, Stratakis E. Mini-Review on Catalytic Hydrogen Evolution from Porphyrin-Graphene Structures. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:19222-19235. [PMID: 39440115 PMCID: PMC11492319 DOI: 10.1021/acs.energyfuels.4c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Porphyrin-based derivatives have been extensively investigated in photocatalytic, electrocatalytic, and photoelectrocatalytic H2 production systems as both photosensitizers and catalysts. Recently, their combination with two-dimensional materials, such as graphene oxide, reduced graphene oxide, and graphene quantum dots, has attracted significant attention for hydrogen evolution due to the advanced electronic properties, good stability, and low-cost fabrication of these materials. This mini-review summarizes the recent developments concerning the application of porphyrin-graphene ensembles in catalytic H2 generation. Current challenges concerning this application are discussed, and future perspectives are also proposed.
Collapse
Affiliation(s)
- Emmanouil Nikoloudakis
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | - Athanassios G. Coutsolelos
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Crete, Greece
- Laboratory
of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute
of Electronic Structure and Laser (IESL), Foundation for Research and Technology−Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Crete, Greece
- Qingdao
Innovation and Development Center, Harbin
Engineering University, Qingdao 266000 Shandong, P. R. China
| |
Collapse
|
2
|
Song Y, He H, Zhao Y, Li Y, Wu M, Li J, Lu X, Zhao L, Wei L. Effective construction of a CuCo MOF@graphene functional electrocatalyst for hydrogen evolution reaction. Dalton Trans 2023; 52:12695-12703. [PMID: 37609809 DOI: 10.1039/d3dt01477k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Electrochemical water splitting is considered a green and sustainable method of producing hydrogen energy. Herein, to pursue a highly efficient hydrogen evolution reaction, we fabricated high-performance electrocatalysts, by utilizing a bimetallic (Cu and Co) metal-organic framework to modify rGO through a one-step in situ approach. The synthesized CuCoOC@rGO presents a highly ordered structure with a defect-rich porous surface for the hydrogen evolution reaction (HER). Specifically, the appropriate adjustment of metal (Cu and Co), 1,3,5-benzenetricarboxylic acid (H3BTC), and rGO ratios leads to a well-defined morphology, which creates a defect-rich porous surface. Characterized by XRD, SEM, EDS, FT-IR spectroscopy, Raman spectroscopy, XPS, and BET, the morphology exposes more active sites, strong evidence for the promotion of electrocatalytic efficiency. Upon the analysis of the experimental data, the obtained CuCoOC@rGO catalyst exhibits excellent activity in alkaline media with a low overpotential of 120 mV at a current density of 10 mA cm-2, and a Tafel slope of 124 mV dec-1 for the hydrogen evolution reaction (HER). Guided by the structure-activity relationship, the superior HER activity of CuCoOC@rGO in alkaline electrolyte could originate from many sources, including: (1) as a self-supported substrate, CuCoOC@rGO not only leads to profitable electrical contact and mechanical stability but also firmly roots into the rGO without extra binders. (2) The highly ordered structure provides smooth ion and electron transport channels, which are conducive to electrolyte infiltration and gas release. (3) The abundance of defective pores on the surface of the nanoarrays, which offers more active sites for the catalytic process. This study provides new prospects for the rational design and fabrication of advanced hierarchical functional electrocatalysts for application in electrochemical energy devices.
Collapse
Affiliation(s)
- Yang Song
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Huiyi He
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Yangyang Zhao
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Ying Li
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Mingzhu Wu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Jing Li
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Xiangman Lu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Lishuang Zhao
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Liguo Wei
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| |
Collapse
|
3
|
Wu Q. A new iron(II) complex as bi-functional electrocatalyst for hydrogen evolution reaction and hydrogen peroxide sensing. J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2183126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Qing Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Two new Ag-MOFs: Synthesis, structure, electrocatalytic hydrogen evolution and H2O2 electrochemical sensing. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
6
|
Nugmanova AG, Kalinina MA. Self-Assembly of Metal-Organic Frameworks in Pickering Emulsions Stabilized with Graphene Oxide. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21050094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Niu X, Lin J, Bo X, Bai J, Guo L. Preparation of a novel Ni-MOF and porous graphene aerogel composite and application for simultaneous electrochemical determination of nitrochlorobenzene isomers with partial least squares. Mikrochim Acta 2020; 187:404. [DOI: 10.1007/s00604-020-04371-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 01/28/2023]
|
8
|
Younis SA, Lim DK, Kim KH, Deep A. Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Adv Colloid Interface Sci 2020; 277:102108. [PMID: 32028075 DOI: 10.1016/j.cis.2020.102108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023]
Abstract
Recently, as a new sub-family of porous coordination polymers (PCPs), porphyrinic-MOFs (Porph-MOFs) with biomimetic features have been developed using porphyrin macrocycles as ligands and/or pillared linkers. The control over the coordination of the porphyrin ligand and its derivatives however remains a challenge for engineering new tunable Porph-MOF frameworks by self-assembly methods. The key challenges exist in the following respects: (i) collapse of the large open pores of Porph-MOFs during synthesis, (ii) deactivation of unsaturated metal-sites (UMCs) by axial coordination, and (iii) the tendency of both coordinated moieties (at peripheral meso- and beta-carbon sites) and the N4-pyridine core to coordinate with metal cations. In this respect, this review covers the advances in the design of Porph-MOFs relative to their counterpart covalent organic frameworks (Porph-COFs). The potential utility of custom-designed porphyrin/metalloporphyrins ligands is highlighted. Synthesis strategies of Porph-MOFs are also illustrated with modular design of hybrid guest@host composites (either Porph@MOFs or guest@Porph-MOFs) with exceptional topologies and stability. This review summarizes the synergistic benefits of coordinated porphyrin ligands and functional guest molecules in Porph-MOF composites for enhanced catalytic performance in various redox applications. This review shed lights on the engineering of new tunable hetero-metals open active sites within (metallo)porphyrin-MOFs as out-of-the-box platforms for enhanced catalytic processes in chemical and biological media.
Collapse
Affiliation(s)
- Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727 Cairo, Egypt; Liquid Chromatography and Water Unit, EPRI-Central Laboratories, Nasr City, 11727 Cairo, Egypt
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University,145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
9
|
Biradha K, Goswami A, Moi R. Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions. Chem Commun (Camb) 2020; 56:10824-10842. [DOI: 10.1039/d0cc04236f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article highlights various strategies of designing coordination polymers for catalysing water splitting reactions.
Collapse
Affiliation(s)
- Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Anindita Goswami
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Rajib Moi
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
10
|
Wang Y, He YC, Zhao FH, Zhu K, Li J, Kan WQ, Jing Z, You J. Synthesis, structure, fluorescence and electrochemical properties of a new Zn( ii)–organic framework constructed by a tricarboxylic acid ligand. NEW J CHEM 2019. [DOI: 10.1039/c9nj02679g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new efficient fluorescent sensor [Zn3(L)(HL)(OH)(H2O)3]·H2O (1) for detecting Cr2O72− anions has been synthesized. Moreover, compound 1 has been calcined to prepare a new electrocatalyst R-C@800 for HER.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Yuan-Chun He
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Fang-Hua Zhao
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Kunlei Zhu
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jie Li
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Wei-Qiu Kan
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huaian 223300
- P. R. China
| | - Zhihong Jing
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jinmao You
- College of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
- Key Laboratory of Tibetan Medicine Research
| |
Collapse
|
11
|
Su L, Du H, Tang C, Nan K, Wu J, Ming Li C. Borate-ion intercalated Ni Fe layered double hydroxide to simultaneously boost mass transport and charge transfer for catalysis of water oxidation. J Colloid Interface Sci 2018; 528:36-44. [DOI: 10.1016/j.jcis.2018.05.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
|