1
|
Kaewda C, Sriwichai S. Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites. BIOSENSORS 2024; 14:349. [PMID: 39056625 PMCID: PMC11275224 DOI: 10.3390/bios14070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, i.e., poly(3-aminobenzylamine) (PABA), composited with functionalized multi-walled carbon nanotubes (f-CNTs), was developed to utilize a conducting polymer as a transducing material. The electrospun nanofibers of the composites were fabricated on the surface of fluorine-doped tin oxide (FTO)-coated glass substrate under the optimized condition. The PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirmed the existence of f-CNTs in the composites. The electroactivity of the electrospun nanofibers was investigated in phosphate buffer saline solution using cyclic voltammetry (CV) before being employed for label-free electrochemical detection of DA using differential pulse voltammetry (DPV). The sensing performances including sensitivity, selectivity, stability, repeatability and reproducibility of the fabricated electrospun nanofiber films were also electrochemically evaluated. The electrochemical DA biosensor based on PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers exhibited a sensitivity of 6.88 µA·cm-2·µM-1 and 7.27 µA·cm-2·µM-1 in the linear range of 50-500 nM (R2 = 0.98) with a limit of detection (LOD) of 0.0974 µM and 0.1554 µM, respectively. The obtained DA biosensor showed great stability, repeatability and reproducibility with precious selectivity under the common interferences, i.e., glucose, ascorbic acid and uric acid. Moreover, the developed electrochemical DA biosensor also showed the good reliability under detection of DA in artificial urine.
Collapse
Affiliation(s)
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
2
|
Fenoy GE, Hasler R, Quartinello F, Marmisollé WA, Lorenz C, Azzaroni O, Bäuerle P, Knoll W. "Clickable" Organic Electrochemical Transistors. JACS AU 2022; 2:2778-2790. [PMID: 36590273 PMCID: PMC9795466 DOI: 10.1021/jacsau.2c00515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of "clickable" organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin-biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.
Collapse
Affiliation(s)
- Gonzalo E. Fenoy
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Roger Hasler
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
| | - Felice Quartinello
- Department
of Agrobiotechnology, IFA-Tulln, Institute
of Environmental Biotechnology, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Waldemar A. Marmisollé
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Christoph Lorenz
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Omar Azzaroni
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas,
Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata − CONICET, 64 and 113, 1900 La Plata, Argentina
| | - Peter Bäuerle
- Institute
for Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Wolfgang Knoll
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- Department
of Scientific Coordination and Management, Danube Private University, 3500 Krems, Austria
| |
Collapse
|
3
|
Izadyar A, Van MN, Miranda M, Weatherford S, Hood EE. Electrocatalytic effect of recombinant Mn peroxidase from corn on microbiosensors to detect glucose. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Klimavicius V, Dagys L, Klimkevičius V, Lengvinaitė D, Aidas K, Balčiu̅nas S, Banys J, Chizhik V, Balevicius V. Solid-State NMR and Impedance Spectroscopy Study of Spin Dynamics in Proton-Conducting Polymers: An Application of Anisotropic Relaxing Model. J Phys Chem B 2021; 125:12592-12602. [PMID: 34748346 PMCID: PMC8607415 DOI: 10.1021/acs.jpcb.1c06533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/21/2021] [Indexed: 12/04/2022]
Abstract
The 1H-13C cross-polarization (CP) kinetics in poly[2-(methacryloyloxy)ethyltrimethylammonium chloride] (PMETAC) was studied under moderate (10 kHz) magic-angle spinning (MAS). To elucidate the role of adsorbed water in spin diffusion and proton conductivity, PMETAC was degassed under vacuum. The CP MAS results were processed by applying the anisotropic Naito and McDowell spin dynamics model, which includes the complete scheme of the rotating frame spin-lattice relaxation pathways. Some earlier studied proton-conducting and nonconducting polymers were added to the analysis in order to prove the capability of the used approach and to get more general conclusions. The spin-diffusion rate constant, which describes the damping of the coherences, was found to be strongly depending on the dipolar I-S coupling constant (DIS). The spin diffusion, associated with the incoherent thermal equilibration with the bath, was found to be most probably independent of DIS. It was deduced that the drying scarcely influences the spin-diffusion rates; however, it significantly (1 order of magnitude) reduces the rotating frame spin-lattice relaxation times. The drying causes the polymer hardening that reflects the changes of the local order parameters. The impedance spectroscopy was applied to study proton conductivity. The activation energies for dielectric relaxation and proton conductivity were determined, and the vehicle-type conductivity mechanism was accepted. The spin-diffusion processes occur on the microsecond scale and are one order faster than the dielectric relaxation. The possibility to determine the proton location in the H-bonded structures in powders using CP MAS technique is discussed.
Collapse
Affiliation(s)
| | - Laurynas Dagys
- Department
of Chemistry, University of Southampton, SO17 1BJ Southampton, U.K.
| | | | - Dovilė Lengvinaitė
- Institute
of Chemical Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Kęstutis Aidas
- Institute
of Chemical Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Sergejus Balčiu̅nas
- Institute
of Applied Electrodynamics and Telecommunications, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Juras Banys
- Institute
of Applied Electrodynamics and Telecommunications, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vladimir Chizhik
- Faculty
of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Vytautas Balevicius
- Institute
of Chemical Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Tan C, Kushwah N, Cui XT. Electrically Controlled Neurochemical Delivery from Microelectrodes for Focal and Transient Modulation of Cellular Behavior. BIOSENSORS-BASEL 2021; 11:bios11090348. [PMID: 34562938 PMCID: PMC8467485 DOI: 10.3390/bios11090348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Electrically controlled drug delivery of neurochemicals and biomolecules from conducting polymer microelectrode coatings hold great potentials in dissecting neural circuit or treating neurological disorders with high spatial and temporal resolution. The direct doping of a drug into a conducting polymer often results in low loading capacity, and the type of molecule that can be released is limited. Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with sulfonated silica nanoparticles (SNP) has been developed as a more versatile platform for drug delivery. In this work, we demonstrate that neurochemicals with different surface charge, e.g., glutamate (GLU), gamma-Aminobutyric acid (GABA), dopamine (DA), 6,7-Dinitroquinoxaline- 2,3-dione (DNQX) and bicuculline, can be, respectively, incorporated into the SNP and electrically triggered to release repeatedly. The drug loaded SNPs were incorporated in PEDOT via electrochemical deposition on platinum microelectrodes. After PEDOT/SNP(drug) coating, the charge storage capacity (CSC) increased 10-fold to 55 ± 3 mC/cm2, and the impedance at 1 kHz was also reduced approximately 6-fold. With the aid of a porous SNP, the loading capacity and number of releases of GLU was increased >4-fold and 66-fold, respectively, in comparison to the direct doping of PEDOT with GLU (PEDOT/GLU). The focal release of GLU and GABA from a PEDOT/SNP (drug) coated microelectrode were tested in cultured neurons using Ca imaging. The change in fluo-4 fluorescence intensity after electrically triggered GLU (+6.7 ± 2.9%) or GABA (−6.8 ± 1.6%) release indicated the successful modulation of neural activities by neurotransmitter release. In addition to activating neural activities, glutamate can also act on endothelial cells to stimulate nitric oxide (NO) release. A dual functional device with two adjacent sensing and releasing electrodes was constructed and we tested this mechanism in endothelial cell cultures. In endothelial cells, approximately 7.6 ± 0.6 nM NO was detected in the vicinity of the NO sensor within 6.2 ± 0.5 s of GLU release. The rise time of NO signal, T0–100, was 14.5 ± 2.2 s. In summary, our work has demonstrated (1) a platform that is capable of loading and releasing drugs with different charges; (2) proof of concept demonstrations of how focal release of drugs can be used as a pharmacological manipulation to study neural circuitry or NO’s effect on endothelial cells.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
| | - Neetu Kushwah
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (N.K.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
6
|
Functionalization Strategies of PEDOT and PEDOT:PSS Films for Organic Bioelectronics Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080212] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic bioelectronics involves the connection of organic semiconductors with living organisms, organs, tissues, cells, membranes, proteins, and even small molecules. In recent years, this field has received great interest due to the development of all kinds of devices architectures, enabling the detection of several relevant biomarkers, the stimulation and sensing of cells and tissues, and the recording of electrophysiological signals, among others. In this review, we discuss recent functionalization approaches for PEDOT and PEDOT:PSS films with the aim of integrating biomolecules for the fabrication of bioelectronics platforms. As the choice of the strategy is determined by the conducting polymer synthesis method, initially PEDOT and PEDOT:PSS films preparation methods are presented. Later, a wide variety of PEDOT functionalization approaches are discussed, together with bioconjugation techniques to develop efficient organic-biological interfaces. Finally, and by making use of these approaches, the fabrication of different platforms towards organic bioelectronics devices is reviewed.
Collapse
|
7
|
Laucirica G, Toum Terrones Y, Cayón VM, Cortez ML, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). NANOSCALE 2020; 12:18390-18399. [PMID: 32941586 DOI: 10.1039/d0nr03634j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last few years, much scientific effort has been devoted to the control of ionic transport properties of solid state nanochannels and the rational integration of chemical systems to induce changes in the ionic transport by interaction with selected target molecules for (bio)sensing purposes. In this work, we present the construction and functional evaluation of a highly sensitive dopamine-responsive iontronic device by functionalization of bullet-shaped track-etched single nanochannels in PET membranes with poly(3-aminobenzylamine) (PABA). The variety of basic groups in this amino-appended polyaniline derivative allows programming of the ion selectivity of the channel by setting the pH conditions. On the other hand, the amino-pendant groups of PABA become suitable binding sites for the selective chemical reaction with dopamine, leading to a change in the nanochannel surface charge. Thus, the exposure of the PABA-modified nanochannel to dopamine solutions selectively produces changes in the iontronic response. By rationally selecting the conditions for both the dopamine binding step and the iontronic reading, we obtained a correlation between the rectification efficiency and dopamine concentration down to the nanomolar range, which was also successfully interpreted in terms of a simple binding model.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Yamili Toum Terrones
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany and Technische Universität Darmstadt, Materialwissenschaft, 64287 Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina.
| |
Collapse
|
8
|
4-Aminobenzoic acid as a novel electrolyte additive for improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes via in situ electrochemical polymerization. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosens Bioelectron 2019; 148:111796. [PMID: 31665672 DOI: 10.1016/j.bios.2019.111796] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023]
Abstract
We present a new strategy of Acetylcholinesterease (AchE) immobilization on graphene field-effect transistors (gFETs) for building up Acetylcholine sensors. This method is based on the electrosynthesis of an amino moiety-bearing polymer layer on the graphene channel. The film of the copolymer poly(3-amino-benzylamine-co-aniline) (PABA) does not only provide the suitable electrostatic charge and non-denaturing environment for enzyme immobilization, but it also improves the pH sensitivity of the gFETs (from 40.8 to 56.3 μA/pH unit), probably due to its wider effective pKa distribution. The local pH changes caused by the enzyme-catalyzed hydrolysis produce a shift in the Dirac point of the gFETs to more negative values, which are evidenced as differences in the gFET conductivity and thereby constituted the signal transduction mechanism of the modified transistors. In this way, the constructed biosensors showed a LOD of 2.3 μM and were able to monitor Ach in the range from 5 to 1000 μM in a flow configuration. Moreover, they showed a sensitivity of -26.6 ± 0.7 μA/Ach decade and also exhibited a very low RSD of 2.6%, revealing good device-to-device reproducibility. The biosensors revealed an excellent selectivity to interferences known to be present in the extracellular milieu, and the response to Ach was recovered by 97.5% after the whole set of interferences injected. Finally, the biosensors showed a fast response time, with an average value of 130 s and a good long-term response.
Collapse
|
10
|
Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901483. [PMID: 31267585 DOI: 10.1002/adma.201901483] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
11
|
Piccinini E, Bliem C, Giussi JM, Knoll W, Azzaroni O. Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8038-8044. [PMID: 31094531 DOI: 10.1021/acs.langmuir.9b00910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The reversible control of the graphene Dirac point using external chemical stimuli is of major interest in the development of advanced electronic devices such as sensors and smart logic gates. Here, we report the coupling of chemoresponsive polymer brushes to reduced graphene oxide (rGO)-based field-effect transistors to modulate the graphene Dirac point in the presence of specific divalent cations. Poly[2-(methacryloyloxy)ethyl] phosphate (PMEP) brushes were grown on the transistor channel by atom transfer radical polymerization initiated from amine-pyrene linkers noncovalently attached to rGO surfaces. Our results show an increase in the Dirac point voltage due to electrostatic gating effects upon the specific binding of Ca2+ and Mg2+ to the PMEP brushes. We demonstrate that the electrostatic gating is reversibly controlled by the charge density of the polymer brushes, which depends on the divalent cation concentration. Moreover, a theoretical formalism based on the Grahame equation and a Langmuir-type binding isotherm is presented to obtain the PMEP-cation association constant from the experimental data.
Collapse
Affiliation(s)
- Esteban Piccinini
- Departamento de Química, Facultad de Ciencias Exactas , Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET , Suc. 4-C.C.16, 1900 La Plata , Argentina
| | | | - Juan M Giussi
- Departamento de Química, Facultad de Ciencias Exactas , Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET , Suc. 4-C.C.16, 1900 La Plata , Argentina
| | | | - Omar Azzaroni
- Departamento de Química, Facultad de Ciencias Exactas , Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET , Suc. 4-C.C.16, 1900 La Plata , Argentina
- CEST-UNLP Partner Lab for Bioelectronics , Diagonal 64 y 113 , La Plata 1900 , Argentina
| |
Collapse
|
12
|
Giussi JM, Cortez ML, Marmisollé WA, Azzaroni O. Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chem Soc Rev 2019; 48:814-849. [PMID: 30543263 DOI: 10.1039/c8cs00705e] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery and development of novel approaches, materials and manufacturing processes in the field of energy are compelling increasing recognition as a major challenge for contemporary societies. The performance and lifetime of energy devices are critically dependent on nanoscale interfacial phenomena. From the viewpoint of materials design, the improvement of current technologies inevitably relies on gaining control over the complex interface between dissimilar materials. In this sense, interfacial nanoarchitectonics with polymer brushes has seen growing interest due to its potential to overcome many of the limitations of energy storage and conversion devices. Polymer brushes offer a broad variety of resources to manipulate interfacial properties and gain molecular control over the synergistic combination of materials. Many recent examples show that the rational integration of polymer brushes in hybrid nanoarchitectures greatly improves the performance of energy devices in terms of power density, lifetime and stability. Seen in this light, polymer brushes provide a new perspective from which to consider the development of hybrid materials and devices with improved functionalities. The aim of this review is therefore to focus on what polymer brush-based solutions can offer and to show how the practical use of surface-grafted polymer layers can improve the performance and efficiency of fuel cells, lithium-ion batteries, organic radical batteries, supercapacitors, photoelectrochemical cells and photovoltaic devices.
Collapse
Affiliation(s)
- Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Diagonal 113 y 64 (1900), La Plata, Argentina.
| | | | | | | |
Collapse
|