1
|
de Oliveira ME, Scussel R, Borghezan LA, Feuser PE, Ramos FF, Cardoso MDM, De Pieri E, Luiz GP, Galvani NC, Dal-Bó AG, Coelho EAF, Machado-de-Ávila RA. Accuracy improvement enzyme-linked immunosorbent assay using superparamagnetic/polyethylene glycol) nanoparticles for leishmaniasis diagnostic. Diagn Microbiol Infect Dis 2024; 109:116326. [PMID: 38692205 DOI: 10.1016/j.diagmicrobio.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serodiagnosis methods have been used as platforms for diagnostic tests for many diseases. Due to magnetic nanoparticles' properties to quickly detach from an external magnetic field and particle size effects, these nanomaterials' functionalization allows the specific isolation of target analytes, enhancing accuracy parameters and reducing serodiagnosis time. Superparamagnetic iron oxide nanoparticles (MNPs) were synthesized and functionalized with polyethylene glycol (PEG) and then associated with the synthetic Leishmaniosis epitope. This nano-peptide antigen showed promising results. Regarding Tegumentary leishmaniasis diagnostic accuracy, the AUC was 0.8398 with sensibility 75% (95CI% 50.50 - 89.82) and specificity 87.50% (95CI% 71.93 - 95.03), and Visceral leishmaniasis accuracy study also present high performance, the AUC was 0.9258 with sensibility 87.50% (95CI% 63.98 - 97.78) and specificity 87.50% (95CI% 71.93 - 95.03). Our results demonstrate that the association of the antigen with MNPs accelerates and improves the diagnosis process. MNPs could be an important tool for enhancing serodiagnosis.
Collapse
Affiliation(s)
- Maria Eduarda de Oliveira
- Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná, 81531-990, Curitiba, Paraná, Brazil
| | - Rahisa Scussel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000, Criciúma, Santa Catarina, Brazil
| | - Letícia Alves Borghezan
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000, Criciúma, Santa Catarina, Brazil
| | - Paulo Emilio Feuser
- Programa de Pós-Graduação em Engenharia Química, Department of Engenharia Química, Universidade Federal de Santa Catarina, Cidade Universitária Trindade, 88010-970, Florianópolis, Santa Catarina, Brazil
| | - Fernanda Fonseca Ramos
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana de Melo Cardoso
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Ellen De Pieri
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000, Criciúma, Santa Catarina, Brazil
| | - Gabriel Paulino Luiz
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000, Criciúma, Santa Catarina, Brazil
| | - Nathalia Coral Galvani
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Alexandre Gonçalves Dal-Bó
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense Sangão, 88806-000, Criciúma, Santa Catarina, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde, Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Universidade Federal do Paraná, 81531-990, Curitiba, Paraná, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000, Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Nikam AN, Roy A, Raychaudhuri R, Navti PD, Soman S, Kulkarni S, Shirur KS, Pandey A, Mutalik S. Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond. Curr Pharm Des 2024; 30:489-518. [PMID: 38757691 DOI: 10.2174/0113816128279479231231092905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.
Collapse
Affiliation(s)
- Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Amrita Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnaraj Somayaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
3
|
Abelaira HM, de Moura AB, Cardoso MM, de Pieri E, Abel JS, Luiz GP, Sombrio EM, Borghezan LA, Anastácio RS, Cruz LA, de Souza TG, Meab C, Lima IR, da Costa C, Dal Bó AG, Pcl S, Machado-de-Ávila RA. Sertraline associated with gold nanoparticles reduce cellular toxicity and induce sex-specific responses in behavior and neuroinflammation biomarkers in a mouse model of anxiety. Pharmacol Biochem Behav 2023; 233:173661. [PMID: 37879445 DOI: 10.1016/j.pbb.2023.173661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to evaluate the effects of sertraline associated with gold nanoparticles (AuNPs) in vitro cell viability and in vivo behavior and inflammatory biomarkers in a mouse model of anxiety. Sertraline associated with AuNPs were synthesized and characterized. For the in vitro study, NIH3T3 and HT-22 cells were treated with different doses of sertraline, AuNPs, and sertraline + AuNPs and their viability was evaluated using the MTT assay. For the in vivo study, pregnant Swiss mice were administered a single dose of lipopolysaccharide (LPS) on the ninth day of gestation. The female and male offspring were divided into five treatment groups on PND 60 and administered chronic treatment for 28 days. The animals were subjected to behavioral testing and were subsequently euthanized. Their brains were collected and analyzed for inflammatory biomarkers. Sertraline associated with AuNPs exhibited significant changes in surface characteristics and increased diameters. Different doses of sertraline + AuNPs showed higher cell viability in NIH3T3 and HT-22 cells compared with sertraline alone. The offspring of LPS-treated dams exhibited anxiety-like behavior and neuroinflammatory biomarker changes during adulthood, which were ameliorated via sertraline + AuNPs treatment. The treatment response was sex-dependent and brain region-specific. These results suggest that AuNPs, which demonstrate potential to bind to other molecules, low toxicity, and reduced inflammation, can be synergistically used with sertraline to improve drug efficacy and safety by decreasing neuroinflammation and sertraline toxicity.
Collapse
Affiliation(s)
- H M Abelaira
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.
| | - A B de Moura
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - M M Cardoso
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - E de Pieri
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - J S Abel
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - G P Luiz
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - E M Sombrio
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - L A Borghezan
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - R S Anastácio
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - L A Cruz
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - T G de Souza
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Corrêa Meab
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - I R Lima
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - C da Costa
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - A G Dal Bó
- Laboratory of Advanced Polymer Processing, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Silveira Pcl
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - R A Machado-de-Ávila
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
4
|
de Sousa GF, Lund RG, da Silva Pinto L. The Role of Plant Lectins in the Cellular and Molecular Processes of Skin Wound Repair: An Overview. Curr Pharm Des 2023; 29:2618-2625. [PMID: 37933218 DOI: 10.2174/0113816128264103231030093124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023]
Abstract
There is increasing pressure for innovative methods to treat compromised and difficult-to-heal wounds. Consequently, new strategies are needed for faster healing, reducing infection, hydrating the wound, stimulating healing mechanisms, accelerating wound closure, and reducing scar formation. In this scenario, lectins present as good candidates for healing agents. Lectins are a structurally heterogeneous group of glycosylated or non-glycosylated proteins of non-immune origin, which can recognize at least one specific monosaccharide or oligosaccharide specific for the reversible binding site. Cell surfaces are rich in glycoproteins (glycosidic receptors) that potentially interact with lectins through the number of carbohydrates reached. This lectin-cell interaction is the molecular basis for triggering various changes in biological organisms, including healing mechanisms. In this context, this review aimed to (i) provide a comprehensive overview of relevant research on the potential of vegetable lectins for wound healing and tissue regeneration processes and (ii) discuss future perspectives.
Collapse
Affiliation(s)
- Guilherme Feijó de Sousa
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Rafael Guerra Lund
- School of Dentistry, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Luciano da Silva Pinto
- Bioinformatics and Proteomics Laboratory (BioPro Lab), Technological Development Center, Federal University of Pelotas, Capão do Leão, RS, Brazil
| |
Collapse
|
5
|
Feuser PE, De Pieri E, Oliveira ME, Cordeiro AP, Cercena R, Hermes de Araújo PH, Dal Bó AG, Machado-de-Ávila RA. Cisplatin and paclitaxel-loaded liposomes induced cervical cancer (HeLa) cell death with multiple copies of human papillomavirus by apoptosis and decreased their cytotoxic effect on non-tumor cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Semenova MG, Antipova AS, Martirosova EI, Chebotarev SA, Palmina NP, Bogdanova NG, Krikunova NI, Zelikina DV, Anokhina MS, Kasparov VV. The relationship between the structure and functionality of essential PUFA delivery systems based on sodium caseinate with phosphatidylcholine liposomes without and with a plant antioxidant: an in vitro and in vivo study. Food Funct 2022; 13:2354-2371. [PMID: 35147140 DOI: 10.1039/d1fo03336k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this work was to establish the main relationship between the structure and functionality of supramolecular complexes formed by sodium caseinate (SC) with phosphatidylcholine (PC) liposomes filled with fish oil (FO) to an equal mass ratio of n-3 to n-6 polyunsaturated fatty acids (PUFA) in the absence and presence of one of the most effective plant antioxidants, namely the essential oil of clove buds (EOC). The functionality of the supramolecular complexes (SC-PC-FO and SC-PC-FO-EOC) was considered from the point of view of the possibility of their use as effective delivery systems for long-chain n-3 PUFAs (eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from FO). The laser light scattering method was used in the static, dynamic and electrophoretic modes to characterize the structure and thermodynamic parameters of the supramolecular complexes in an aqueous medium. It was found that the SC-PC-FO and SC-PC-FO-EOC complex particles had the following similar properties: nanosize; a spherical shape; 100% solubility in an aqueous medium (pH 7.0, ionic strength = 0.001 M); a high encapsulating ability of SC (up to 70%) in relation to the studied liposomes; and a high protective ability relative to lipid autooxidation (up to 96% on the 20th day of storage at room temperature in light). In addition, a sequential transformation of both the structural and thermodynamic parameters has been observed for the complex particles under in vitro simulated gastrointestinal (GI) conditions in accordance with the INFOGEST protocol. A greater release of the encapsulated lipids from the enzymatically hydrolyzed complex particles was observed at the small intestine stage compared to their release at the gastric stage. These data were in good agreement with those on the assessment of the bioavailability of the target PUFAs in in vivo experiments based on the chronic intake of aqueous solutions of the complexes (both SC-PC-FO and SC-PC-FO-EOC) by experimental mice for 92 days. Liver lipid profiles of the mice, obtained by gas-liquid chromatography, showed the following: (i) an almost twofold increase in the DHA content as compared with that of the control; (ii) an almost threefold decrease in the mass ratio of arachidonic acid (AA) (C20:4 n-6) to DHA (C22:6 n-3) compared to that of the control due to both a significant decrease in the AA content and a simultaneous pronounced increase in the DHA content; and (iii) an almost twofold decrease in the mass ratio of the total amounts of n-6 to n-3 PUFAs compared to that of the control.
Collapse
Affiliation(s)
- Maria G Semenova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Anna S Antipova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Elena I Martirosova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Sergey A Chebotarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Nadezhda P Palmina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Natalya G Bogdanova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Natalya I Krikunova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Daria V Zelikina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Maria S Anokhina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| | - Valery V Kasparov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Russian Federation.
| |
Collapse
|
7
|
de Moraes Nogueira AO, Felipe Kokuszi LT, Poester Cordeiro A, Ziebell Salgado H, Costa JAV, Santos LO, de Lima VR. Spirulina sp. LEB 18-extracted phycocyanin: Effects on liposomes' physicochemical parameters and correlation with antiradical/antioxidant properties. Chem Phys Lipids 2021; 236:105064. [PMID: 33609502 DOI: 10.1016/j.chemphyslip.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
Abstract
This study describes the physicochemical properties of soybean asolectin (ASO) liposomes loaded with phycocyanin (Phy) extracted from Spirulina sp. LEB 18. The effects of Phy in the liposomes' properties were investigated by Fourier transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance (NMR), zeta (ζ)-potential, dynamic light scattering (DLS) and ultraviolet-visible (UV-vis) techniques. Phy restricted the motion of ASO polar and interface groups and disrupted the package arrangement of the lipid hydrophobic regions, as a likely effect of dipolar and π interactions related to its amino acid residues and pyrrole portions. These interactions were correlated to antiradical/antioxidant Phy responses obtained by 2,2-diphenyl-1-picrylhidrazil (DPPH) assay, thiobarbituric acid reactive substances (TBARS) and ferric reducing antioxidant power (FRAP) methods, and discussed to bring new chemical perspectives about Phy-loaded liposomes-related nutraceutical applications in inflammatory and viral infection processes.
Collapse
Affiliation(s)
- Alessandro Oliveira de Moraes Nogueira
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Brazil; Laboratório de Biotecnologia, Brazil
| | - Lucas Thadeu Felipe Kokuszi
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Brazil
| | | | | | - Jorge Alberto Vieira Costa
- Laboratório de Engenharia Bioquímica, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | | | - Vânia Rodrigues de Lima
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Brazil.
| |
Collapse
|
8
|
Feuser PE, Possato JC, Scussel R, Cercena R, de Araújo PHH, Machado-de-Ávila RA, Dal Bó AG. In vitro phototoxicity of zinc phthalocyanine (ZnPc) loaded in liposomes against human breast cancer cells. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424621500073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, zinc phthalocyanine (ZnPc) was encapsulated in liposomes (Phosphatidylcholine (PC) from soybean lecithin (95% phosphatidylcholine, 5% lysophosphatidylcholine), and phosphatidic acid) obtained by a reverse-phase evaporation method. Liposomes were characterized and cytotoxicity and phototoxicity assays were performed using mouse embryo fibroblast (NIH3T3) and human breast cancer (MDAMB231), respectively. ZnPc was successfully encapsulated in liposomes ([Formula: see text]80%), presenting single populations with sizes of [Formula: see text]300 nm and negative zeta potential (-35 to -40 mV). The release profile at different pH presented a biphasic release controlled by the Fickian diffusion mechanism. The cytotoxicity assays carried out on NIH3T3 cells showed that the liposomes provided good protection for ZnPc, and did not affect the viability of non-cancerous cells. In contrast, free ZnPc significantly reduced non-cancerous cell viability at higher concentrations. ZnPc loaded in liposomes ensured a higher phototoxic effect on the MDAMB231 cells at all concentrations tested when exposed to low light dose.
Collapse
Affiliation(s)
- Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program in Health Science, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Jonathann Corrêa Possato
- Postgraduate Program in Health Science, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Rahisa Scussel
- Postgraduate Program in Health Science, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Rodrigo Cercena
- Postgraduate Program in Materials Science and Engineering, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Alexandre Gonçalves Dal Bó
- Postgraduate Program in Materials Science and Engineering, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| |
Collapse
|
9
|
Alavi M, Asare-Addo K, Nokhodchi A. Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus. Biomedicines 2020; 8:E580. [PMID: 33297444 PMCID: PMC7762367 DOI: 10.3390/biomedicines8120580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of a novel strain coronavirus as the causative agent of COVID-19 pneumonia, first identified in Wuhan, China in December 2019, has resulted in considerable focus on virulence abilities of coronavirus. Lectins are natural proteins with the ability to bind specific carbohydrates related to various microorganisms, including viruses, bacteria, fungi and parasites. Lectins have the ability to agglutinate and neutralize these pathogeneses. The delivery of the encapsulated antiviral agents or vaccines across the cell membrane can be possible by functionalized micellar and liposomal formulations. In this mini-review, recent advances and challenges related to important lectins with inhibition activities against coronaviruses are presented to obtain a novel viewpoint of microformulations or nanoformulations by micellar and liposomal cell-binding carriers.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Faculty of Science, Razi University, Kermanshah 67146, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Ali Nokhodchi
- Pharmaceuics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| |
Collapse
|
10
|
Co-encapsulation of sodium diethyldithiocarbamate (DETC) and zinc phthalocyanine (ZnPc) in liposomes promotes increases phototoxic activity against (MDA-MB 231) human breast cancer cells. Colloids Surf B Biointerfaces 2020; 197:111434. [PMID: 33166932 DOI: 10.1016/j.colsurfb.2020.111434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
There has been considerable interest in the development of novel photosensitisers for photodynamic therapy (PDT). The use of liposomes as drug delivery systems containing simultaneously two or more drugs is an attractive idea to create a new platform for PDT application. Therefore, the aim of this study was to evaluate the synergistic effect of diethyldithiocarbamate (DETC) and zinc phthalocyanine (PDT) co-encapsulated in liposomes. The reverse-phase evaporation method resulted in the successful encapsulation of DETC and ZnPc in liposomes, with encapsulation efficiencies above 85 %, mean size of 308 nm, and zeta potential of - 36 mV. The co-encapsulation decreased the cytotoxic effects in mouse embryo fibroblast (NIH3T3) cells and inhibited damage to human erythrocytes compared to free DETC + ZnPc. In addition, both the free drugs and co-encapsulated ones promoted more pronounced phototoxic effects on human breast cancer cells (MDA-MB231) compared to treatment with ZnPc alone. This synergistic effect was determined by DETC-induced decreases in the antioxidant enzyme activity of superoxide dismutase (SOD) and glutathione (GSH).
Collapse
|
11
|
Borba LC, Griebeler CH, Bach MF, Barboza CA, Nogara PA, da Rocha JBT, Amaral SS, Rodembusch FS, Schneider PH. Non-traditional intrinsic luminescence of amphiphilic-based ionic liquids from oxazolidines: Interaction studies in phosphatidylcholine-composed liposomes and BSA optical sensing in solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Semenova M, Zelikina D, Antipova A, Martirosova E, Palmina N, Chebotarev S, Samuseva Y, Bogdanova N, Kasparov V. Impact of the character of the associative interactions between chitosan and whey protein isolate on the structure, thermodynamic parameters, and functionality of their complexes with essential lipids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Kroetz T, dos Santos MC, Beal R, Zanotto GM, Santos FS, Giacomelli FC, Gonçalves PFB, de Lima VR, Dal-Bó AG, Rodembusch FS. Proton transfer in fluorescent secondary amines: synthesis, photophysics, theoretical calculation and preparation of photoactive phosphatidylcholine-based liposomes. Photochem Photobiol Sci 2019; 18:1171-1184. [DOI: 10.1039/c9pp00017h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New proton-transfer lipophilic based benzazoles.
Collapse
Affiliation(s)
- Thais Kroetz
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- CEP 91501-970 Porto Alegre-RS
- Brazil
| | | | - Roiney Beal
- Grupo de Química Teórica
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- Porto Alegre-RS
- Brazil
| | - Gabriel Modernell Zanotto
- Grupo de Química Teórica
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- Porto Alegre-RS
- Brazil
| | | | | | - Paulo F. B. Gonçalves
- Grupo de Química Teórica
- Instituto de Química
- Universidade Federal do Rio Grande do Sul
- Porto Alegre-RS
- Brazil
| | | | | | - Fabiano S. Rodembusch
- Grupo de Pesquisa em Fotoquímica Orgânica Aplicada
- Universidade Federal do Rio Grande do Sul – Instituto de Química
- CEP 91501-970 Porto Alegre-RS
- Brazil
| |
Collapse
|
14
|
Cruz dos Santos S, Osti Silva N, dos Santos Espinelli JB, Germani Marinho MA, Vieira Borges Z, Bruzamarello Caon Branco N, Faita FL, Meira Soares B, Horn AP, Parize AL, Rodrigues de Lima V. Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes. Chem Phys Lipids 2019; 218:22-33. [DOI: 10.1016/j.chemphyslip.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023]
|
15
|
Physicochemical Parameters for Brea Gum Exudate from Cercidium praecox Tree. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brea gum (BG) is a hydrocolloid obtained as an exudate from the Cercidium praecox tree. The physicochemical properties of brea gum are similar to those of the arabic gum and, in many cases, the former can replace the latter. The brea gum was incorporated in 2013 into the Argentine Food Code because of its ancestral background and its current food uses. Brea gum could be also used as additive or excipient for pharmacological formulations. This work reports intrinsic viscosity, coil overlap, and Mark–Houwink–Kuhn–Sakurada (MHKS) parameters of BG solutions. Partially hydrolyzed BG solution was analyzed using intrinsic viscosity measurements, dynamic light scattering and size-exclusion chromatography (SEC). The MHKS parameters, a and k, were determined for BG at 25 °C, with values of 0.4133 and 0.1347 cm3 g−1, respectively. The viscometric molecular weight of BG was 1890 kg mol−1. The hydrodynamic parameters of BG were indicative of a hyperbranched structure and spherical conformation. The knowledge obtained on the physicochemical properties of brea gum favors its use in food and pharmaceutical applications.
Collapse
|