1
|
Gong M, Dong Y, Zhu M, Qin F, Wang T, Shah FU, An R. Cation Chain Length of Nonhalogenated Ionic Liquids Matters in Enhancing SERS of Cytochrome c on Zr-Al-Co-O Nanotube Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8886-8896. [PMID: 38622867 DOI: 10.1021/acs.langmuir.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is a remarkably powerful analytical technique enabling trace-level detection of biological molecules. The interaction of a probe molecule with the SERS substrate shows important distinctions in the SERS spectra, providing inherent fingerprint information on the probe molecule. Herein, nonhalogenated phosphonium-based ionic liquids (ILs) containing cations with varying chain lengths were used as trace additives to amplify the interaction between the cytochrome c (Cyt c) and Zr-Al-Co-O (ZACO) nanotube arrays, strengthening the SERS signals. An increased enhancement factor (EF) by 2.5-41.2 times compared with the system without ILs was achieved. The improvement of the SERS sensitivity with the introduction of these ILs is strongly dependent on the cation chain length, in which the increasing magnitude of EF is more pronounced in the system with a longer alkyl chain length on the cation. Comparing the interaction forces measured by Cyt c-grafted atomic force microscopy (AFM) probes on ZACO substrates with those predicted by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the van der Waals forces became increasingly dominant as the chain length of the cations increased, associated with stronger Cyt c-ZACO XDLVO interaction forces. The major contributing component, van der Waals force, stems from the longer cation chains of the IL, which act as a bridge to connect Cyt c and the ZACO substrate, promoting the anchoring of the Cyt c molecules onto the substrate, thereby benefiting SERS enhancement.
Collapse
Affiliation(s)
- Mian Gong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Minghai Zhu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fengxiang Qin
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianchi Wang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Wang K, Yue Z, Fang X, Lin H, Wang L, Cao L, Sui J, Ju L. SERS detection of thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159108. [PMID: 36191707 DOI: 10.1016/j.scitotenv.2022.159108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The development of sensitive and long-term signal-stable plasmonic substrates is vital to the in-field application of the surface-enhanced Raman spectroscopy (SERS) technique. The colloidal gold nanoparticles (AuNPs) system is commonly used in SERS detection, but it shows less signal stability and reproducibility due to the uncontrollable aggregation of nanoparticles by adding aggregating agents in SERS detection. In this study, we developed a new SERS detection platform based on polyacrylamide hydrogel-enclosed plasmonic gold nanoparticle aggregates (PAH-AuANs). In the system, the formation of PAH can rapidly stabilize the gold nanoparticle aggregates, avoiding the over-aggregation or precipitation of AuNPs. With the PAH concentration in the range of 6-10 % and AuNPs at the concentration of 0.2 nM, the resulting PAH-AuNAs platform exhibited both sensitive SERS activity and excellent SERS signal stability. The relative standard deviation of the 4-MBA probe SERS signal collected from the PAH-AuNAs platform was lower than 3 %. The limit of detection for the pesticide thiram was down to 0.38 μg/L with a handheld Raman spectrometer. Moreover, the procedure for preparing the PAH-AuNAs platform was easy to handle, offering a new strategy for in-field detection of environmental contaminants with a handheld Raman spectrometer in the future.
Collapse
Affiliation(s)
- Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China.
| | - Zilin Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiu Fang
- Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Ju
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
3
|
Dong Y, Gong M, Shah FU, Laaksonen A, An R, Ji X. Phosphonium-Based Ionic Liquid Significantly Enhances SERS of Cytochrome c on TiO 2 Nanotube Arrays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27456-27465. [PMID: 35642388 PMCID: PMC9204693 DOI: 10.1021/acsami.2c05781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 05/05/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an attractive technique for studying trace detection. It is of utmost importance to further improve the performance and understand the underlying mechanisms. An ionic liquid (IL), the anion of which is derived from biomass, [P6,6,6,14][FuA] was synthesized and used as a trace additive to improve the SERS performance of cytochrome c (Cyt c) on TiO2 nanotube arrays (TNAs). An increased and better enhancement factor (EF) by four to five times as compared to the system without an IL was obtained, which is better than that from using the choline-based amino acid IL previously reported by us. Dissociation of the ILs improved the ionic conductivity of the system, and the long hydrophobic tails of the [P6,6,6,14]+ cation contributed to a strong electrostatic interaction between Cyt c and the TNA surface, thereby enhancing the SERS performance. Atomic force microscopy did verify strong electrostatic interactions between the Cyt c molecules and TNAs after the addition of the IL. This work demonstrates the importance of introducing the phosphonium-based IL to enhance the SERS performance, which will stimulate further development of more effective ILs on SERS detection and other relevant applications in biology.
Collapse
Affiliation(s)
- Yihui Dong
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mian Gong
- Herbert
Gleiter Institute of Nanoscience, Department of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P. R. China
| | - Faiz Ullah Shah
- Chemistry
of Interfaces, Luleå University of
Technology, Luleå SE-971 87, Sweden
| | - Aatto Laaksonen
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-10691, Sweden
- Center
of
Advanced Research in Bionanoconjugates and Biopolymers, ‘‘Petru Poni” Institute of Macromolecular
Chemistry, Iasi 700469, Romania
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rong An
- Herbert
Gleiter Institute of Nanoscience, Department of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P. R. China
| | - Xiaoyan Ji
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden
| |
Collapse
|
4
|
Xu Y, Wang T, Zhang L, Tang Y, Huang W, Jia H. Investigation on the effects of cationic surface active ionic liquid/anionic surfactant mixtures on the interfacial tension of water/crude oil system and their application in enhancing crude oil recovery. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1942034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yingbiao Xu
- Technology Inspection Center, Shengli Oilfield Company, SINOPEC, Dongying, China
- Ministry of Education, Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Qingdao, China
| | - Tingyi Wang
- Technology Inspection Center, Shengli Oilfield Company, SINOPEC, Dongying, China
| | - Lingyu Zhang
- Technology Inspection Center, Shengli Oilfield Company, SINOPEC, Dongying, China
| | - Yongan Tang
- Technology Inspection Center, Shengli Oilfield Company, SINOPEC, Dongying, China
| | - Wenjian Huang
- Ministry of Education, Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Qingdao, China
- Offshore Oil engineering Co.Ltd, CNOOC, Qingdao, China
| | - Han Jia
- Ministry of Education, Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Qingdao, China
| |
Collapse
|
5
|
Liu W, Sun Q, Zou H, Zhang X, Xiao X, Shi Z, Song Y. Ionic liquid/H 2O two-phase synthesis and luminescence properties of BaGdF 5:RE 3+ (RE = Ce/Dy/Eu/Yb/Er) octahedra. NEW J CHEM 2021. [DOI: 10.1039/d0nj04689b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BaGdF5:RE3+ (RE = Ce/Dy/Eu) octahedra were synthesized via a facile ionic liquid/H2O two-phase system. Multi-color emissions have been realized.
Collapse
Affiliation(s)
- Wei Liu
- College of Chemistry
- Jilin University
- P. R. China
- Department of Spinal Surgery
- First Hospital
| | - Qi Sun
- College of Chemistry
- Jilin University
- P. R. China
| | - Haifeng Zou
- College of Chemistry
- Jilin University
- P. R. China
| | | | - Xue Xiao
- College of Chemistry
- Jilin University
- P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yanhua Song
- College of Chemistry
- Jilin University
- P. R. China
| |
Collapse
|
6
|
Improved coarse-grain model to unravel the phase behavior of 1-alkyl-3-methylimidazolium-based ionic liquids through molecular dynamics simulations. J Colloid Interface Sci 2020; 574:324-336. [DOI: 10.1016/j.jcis.2020.04.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
|
7
|
Li H, Yue X, Gao N, Tang J, Lv X, Hou J. Microwave method synthesis of magnetic ionic liquid/gold nanoparticles as ultrasensitive SERS substrates for trace clopidol detection. Anal Bioanal Chem 2020; 412:3063-3071. [DOI: 10.1007/s00216-020-02588-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
|
8
|
Yao K, Zhao C, Wang N, Li T, Lu W, Wang J. An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis. NANOSCALE 2020; 12:638-647. [PMID: 31829363 DOI: 10.1039/c9nr07144j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fine construction of porous bimetallic nanomaterials with tunable components and structures is of great importance for their catalytic performance and durability. Herein, we present a facile and mild one-pot route for the preparation of porous PtPd bimetallic nanoparticles (NPs) with reversed structures in aqueous solution for the first time. To this end, a common ionic liquid (IL) 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl) is utilized to direct the growth and assembly of porous structures of PtPd NPs. It is shown that the as-prepared porous Pt25Pd75 NPs have obvious hierarchical structures with nanoflowers as subunits and nanorods as basic units. The elemental components and structures of the porous PtPd NPs can be tuned by the precursor ratio and the [C16mim]Cl concentration. Furthermore, various porous PtPd bimetallic structures from Pd-on-Pt to Pt-on-Pd may be efficiently switched by controlling the concentration of glycine. Owing to their high specific surface area, porous hierarchical structures (including mesopores and micropores), and probable electronic effects between Pt and Pd, the porous Pt25Pd75 NPs (Pd-on-Pt structure) are found to exhibit prominent catalytic activity and high stability for hydrogen production from hydrolysis of ammonia borane.
Collapse
Affiliation(s)
- Kaisheng Yao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Ionic Liquid-Modulated Synthesis of Porous Worm-Like Gold with Strong SERS Response and Superior Catalytic Activities. NANOMATERIALS 2019; 9:nano9121772. [PMID: 31842430 PMCID: PMC6955750 DOI: 10.3390/nano9121772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Porous gold with well-defined shape and size have aroused extensive research enthusiasm due to their prominent properties in various applications. However, it is still a great challenge to explore a simple, green, and low-cost route to fabricate porous gold with a “clean” surface. In this work, porous worm-like Au has been easily synthesized in a one-step procedure from aqueous solution at room temperature under the action of ionic liquid tetrapropylammonium glycine ([N3333][Gly]). It is shown that the as-prepared porous worm-like Au has the length from 0.3 to 0.6 μm and the width of approximately 100–150 nm, and it is composed of lots of small nanoparticles about 6–12 nm in diameter. With rhodamine 6G (R6G) as a probe molecule, porous worm-like Au displays remarkable surface enhanced Raman scattering (SERS) sensitivity (detection limit is lower than 10−13 M), and extremely high reproducibility (average relative standard deviations is less than 2%). At the same time, owing to significantly high specific surface area, various pore sizes and plenty of crystal defects, porous worm-like Au also exhibits excellent catalytic performance in the reduction of nitroaromatics, such as p-nitrophenol and p-nitroaniline, which can be completely converted within only 100 s and 150 s, respectively. It is expected that the as-prepared porous worm-like Au with porous and self-supported structures will also present the encouraging advances in electrocatalysis, sensing, and many others.
Collapse
|
10
|
Liu J, Huang P, Feng Q, Lian P, Liang Y, Huang W, Yan H, Jia H. Systematic investigation of the effects of an anionic surface active ionic liquid on the interfacial tension of a water/crude oil system and its application to enhance crude oil recovery. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1527230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jingping Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Pan Huang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Qing Feng
- Oilfield production optimization institution, China Oilfield Services Limited, Tianjin, China
| | - Peng Lian
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yipu Liang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Wenjian Huang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng, China
| | - Han Jia
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
11
|
Yao K, Zhao C, Wang N, Lu W, Wang H, Zhao S, Wang J. Ionic liquid-assisted synthesis of 3D nanoporous gold and its superior catalytic properties. CrystEngComm 2018. [DOI: 10.1039/c8ce01130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3D nanoporous gold was rapidly synthesized with the assistance of [HEmim]Cl in aqueous solution and was found to have excellent catalytic properties for p-nitrophenol reduction and methylene blue degradation.
Collapse
Affiliation(s)
- Kaisheng Yao
- School of Chemical Engineering and Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Chenchen Zhao
- School of Chemical Engineering and Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Nan Wang
- School of Chemical Engineering and Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Weiwei Lu
- School of Chemical Engineering and Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Shuang Zhao
- School of Chemical Engineering and Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|