1
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Jeevananthan V, Senadi GC, Muthu K, Arumugam A, Shanmugan S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg Chem 2024; 63:5446-5463. [PMID: 38456408 DOI: 10.1021/acs.inorgchem.3c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal-organic framework (SRMIST-1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST-1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST-1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1-5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST-1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry.
Collapse
Affiliation(s)
- Velusamy Jeevananthan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kesavan Muthu
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Swaminathan Shanmugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Das R, Belgamwar R, Manna SS, Pathak B, Polshettiwar V, Nagaraja CM. Design of porphyrin-based frameworks for efficient visible light-promoted reduction of CO 2 from dilute gas: Combined experimental and theoretical investigation. J Colloid Interface Sci 2023; 652:480-489. [PMID: 37604059 DOI: 10.1016/j.jcis.2023.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
The photocatalytic carbon dioxide reduction (CO2R) coupled with hydrogen evolution reaction (HER) constitutes a promising step for a sustainable generation of syngas (CO + H2), an essential feedstock for the preparation of several commodity chemicals. Herein, visible light/sunlight-promoted catalytic reduction of CO2 and protons to syngas using rationally designed porphyrin-based 2D porous organic frameworks, POF(Co/Zn) is demonstrated. Indeed, POF(Co) showed superior catalytic performance over the Zn counterpart with CO and H2 generation rates of 1104 and 3981 μmol g-1h-1, respectively. The excellent catalytic performance of Co-based POF is aided by the favorable transfer of photo-excited electrons from Ru-sensitizer to the CoII catalytic site, which is not feasible in the case of POF(Zn), revealed from the theoretical investigation. More importantly, the POF(Co) catalyzes the reduction of CO2 even from dilute gas (13% CO2), surpassing most reported framework-based photocatalytic systems. Significantly, the catalytic performance of POF(Co) was increased under natural sunlight conditions suggesting sunlight-promoted enhancement in syngas generation. The in-depth theoretical investigation further unveiled the comprehensive mechanistic pathway of the light-promoted concurrent CO and H2 generation. This work showcases the advantages of porphyrin-based frameworks for visible light/sunlight-promoted syngas generation by utilizing greenhouse gas (CO2) and protons under mild eco-friendly conditions.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Rajesh Belgamwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India.
| |
Collapse
|
4
|
Kumar S, Kumar M, Bhalla V. Cobalt-Centered Supramolecular Nanoensemble for Regulated Aerobic Oxidation of Alcohols and "One-Pot" Synthesis of Quinazolin-4(3 H)-ones. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49246-49258. [PMID: 37844300 DOI: 10.1021/acsami.3c11244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The supramolecular assemblies of the donor-acceptor (D-A) system Im-Tpy, having phenanthro[9,10-d]imidazole as the donor and terpyridyl group as the acceptor unit, have been developed, which serve as supramolecular host to stabilize Co(II) in its nanoform. The as-prepared supramolecular nanoensemble Im-Tpy@Co in DMSO:water (7:3) shows high thermal stability and photostability. Even in the case of solvent mismatch, i.e., on dilution with cosolvent THF/DMSO, insignificant changes were observed in the size/morphology of the nanoensemble. The as-prepared Im-Tpy@Co nanoensemble in low catalytic loading (0.1 mol % of Co) catalyzes the oxidation of a wide variety of alcohols to aromatic aldehydes/ketones using visible light radiations as the source of energy without the need of any additive at room temperature. In comparison to already reported systems, the Im-Tpy@Co nanoensemble exhibits high turnover numbers (TONs) and turnover frequencies (TOFs). The practical application of the catalytic system has also been demonstrated in the gram-scale synthesis of 4-chlorobenzaldehyde. The Im-Tpy@Co nanoensemble exhibits recyclability up to four catalytic cycles with insignificant leaching and morphological changes. The present study also demonstrates the catalytic activity of the Im-Tpy@Co nanoensemble in "one-pot" synthesis of quinazolin-4(3H)-ones from 2-aminobenzamide and primary alcohols with better efficiency in comparison to other transition-metal-based catalytic systems.
Collapse
Affiliation(s)
- Sourav Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
5
|
Krishnan J, Ranjithkumar K, Dhakshinamoorthy A. Synthesis of 4-styrylquinazolines using copper-based porous solid catalyst. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
A zirconium–organic framework nanosheet-based aptasensor with outstanding electrochemical sensing performance. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Das R, Manna SS, Pathak B, Nagaraja CM. Strategic Design of Mg-Centered Porphyrin Metal-Organic Framework for Efficient Visible Light-Promoted Fixation of CO 2 under Ambient Conditions: Combined Experimental and Theoretical Investigation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33285-33296. [PMID: 35839282 DOI: 10.1021/acsami.2c07969] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The sunlight-driven fixation of CO2 into valuable chemicals constitutes a promising approach toward environmental remediation and energy sustainability over traditional thermal-driven fixation. Consequently, in this article, we report a strategic design and utilization of Mg-centered porphyrin-based metal-organic framework (MOFs) having relevance to chlorophyll in green plants as a visible light-promoted highly recyclable catalyst for the effective fixation of CO2 into value-added cyclic carbonates under ambient conditions. Indeed, the Mg-centered porphyrin MOF showed good CO2 capture ability with a high heat of adsorption (44.5 kJ/mol) and superior catalytic activity under visible light irradiation in comparison to thermal-driven conditions. The excellent light-promoted catalytic activity of Mg-porphyrin MOF has been attributed to facile ligand-to-metal charge transfer transition from the photoexcited Mg-porphyrin unit (SBU) to the Zr6 cluster which in turn activates CO2, thereby lowering the activation barrier for its cycloaddition with epoxides. The in-depth theoretical studies further unveiled the detailed mechanistic path of the light-promoted conversion of CO2 into high-value cyclic carbonates. This study represents a rare demonstration of sunlight-promoted sustainable fixation of CO2, a greenhouse gas into value-added chemicals.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - C M Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
8
|
Askari S, Khodaei MM, Jafarzadeh M. Heterogenized Phosphinic Acid on UiO-66-NH2: A Bifunctional Catalyst for the Synthesis of Polyhydroquinolines. Catal Letters 2022. [DOI: 10.1007/s10562-021-03734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Guo Y, Zhang X, Xie N, Guo R, Wang Y, Sun Z, Li H, Jia H, Niu D, Sun HB. Investigation of antimony adsorption on a zirconium-porphyrin-based metal-organic framework. Dalton Trans 2021; 50:13932-13942. [PMID: 34528984 DOI: 10.1039/d1dt01895g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A zirconium-porphyrin based organic framework PCN-222 was employed for investigating the adsorption performance of Sb(III) in aqueous solution. It is proved that the adsorbent has the advantages of rapid adsorption and high capacity. Interestingly, we discover that PCN-222 shows pH-dependent adsorption performance, with higher capacity at pH = 2 and 8 than at pH = 5. According to XPS and FT-IR analyses, an adsorption model of PCN-222 with pH = 2, 5, and 8 is proposed, that is, zirconium clusters combine with antimony at different pH values with bidentate complexes, monodentate complexes, and alkaline monodentate complexes, thus producing an excellent adsorption effect. Moreover, the porphyrin ring is also beneficial for the adsorption of antimony. In addition, PCN-222 shows good regeneration and recycling performance, and it is a promising adsorbent as well as a platform for investigating the removal of Sb(III) in water treatment.
Collapse
Affiliation(s)
- Ying Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China.
| | - Xinyue Zhang
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China. .,School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Nianyi Xie
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China.
| | - Rongxiu Guo
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China. .,School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Yao Wang
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China.
| | - Zejun Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China. .,Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Hong Li
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China.
| | - Hongna Jia
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China.
| | - Dun Niu
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China.
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
10
|
Krishna B, Payra S, Roy S. Synthesis of dihydropyrimidinones via multicomponent reaction route over acid functionalized Metal-Organic framework catalysts. J Colloid Interface Sci 2021; 607:729-741. [PMID: 34536933 DOI: 10.1016/j.jcis.2021.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Multi component reactions over heterogeneous solid acid catalysts are extremely important owing to easy separation, amenable recycling, and prospective scaling up of the process. Here, we are reporting the synthesis of biologically important dihydropyrimidinones over postsynthetic modified Cr-based metal-organic framework materials as heterogeneous catalysts containing the bifunctional Lewis and Brønsted acid sites. Cr-based metal-organic frameworks contained coordinatively unsaturated metal sites as inherent Lewis acid sites, whereas postsynthetic modifications introduced the Brønsted acid sites in the framework. A direct one pot synthesis route was employed to produce the pristine MOF in pure aqueous medium without using any additives. The bulk structure, morphology, surface and bonding properties of the synthesized materials were thoroughly characterized with powder XRD, FTIR, XPS, FE-SEM, TGA, and N2 sorption isotherms. A qualitative evolution of acid strength was carried out over the functionalized MOFs. Among the post synthetic functionalized materials, carboxylic acid functionalized framework exhibited a very high yield of dihydropyrimidinones under solvent less moderate reaction conditions. The catalyst also demonstrated a robust recyclability and wide substrate scope. Comparative study showed a very high catalytic activity of the postsynthetic modified MOFs in comparison to the reported literature. The reaction condition was optimized by varying parameters like solvent, temperature, reaction duration and catalyst loadings. The mechanistic studies indicated the involvement of both the Lewis and Brønsted sites acid sites of the catalysts in the multicomponent reaction.
Collapse
Affiliation(s)
- Bandarupalli Krishna
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad-500078, India; Adama India Pvt. Ltd, Genome Valley Hyderabad - 500078, India
| | - Soumitra Payra
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad-500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad-500078, India.
| |
Collapse
|
11
|
Hou H, Ma X, Lin Y, Lin J, Sun W, Wang L, Xu X, Ke F. Electrochemical synthesis of quinazolinone via I 2-catalyzed tandem oxidation in aqueous solution. RSC Adv 2021; 11:17721-17726. [PMID: 35480173 PMCID: PMC9033184 DOI: 10.1039/d1ra02706a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
The development of protocols for synthesizing quinazolinones using biocompatible catalysts in aqueous medium will help to resolve the difficulties of using green and sustainable chemistry for their synthesis. Herein, using I2 in coordination with electrochemical synthesis induced a C-H oxidation reaction which is reported when using water as the environmentally friendly solvent to access a broad range of quinazolinones at room temperature. The reaction mechanism strongly showed that I2 cooperates electrochemically promoted the oxidation of alcohols, then effectively cyclizing amides to various quinazolinones.
Collapse
Affiliation(s)
- Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Yingying Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Jin Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Lei Wang
- School of Science, Xuchang University Xuchang 461000 China
| | - Xiuzhi Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016.,Faculty of Material and Chemical Engineering, Yibin University Yibin 644000 China
| |
Collapse
|
12
|
Harvey PD. Porphyrin-based MOFs as heterogeneous photocatalysts for the eradication of organic pollutants and toxins. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water and air pollution are among the major environmental challenges of this era. Waste management, economic sustainable development and renewable energy are unavoidable concomitant considerations. Over the past five years, nanosized metal-organic frameworks (nano-MOFs) have been developed for the elimination of pollutants in wet media and air-born toxins using the highly efficient reactive oxygen species (ROS) of type I (H2O2, •OH, O[Formula: see text] and of type II (1O[Formula: see text]. The ROS are catalytically and efficiently generated through photosensitization, and porphyrins and metalloporphyrins are pigments of choice for this purpose. This short review summarizes the fundamentals of ROS generation by porphyrin-based nano-MOFs (mainly through the formation of ROS type II) and their composites (leading to ROS type I), which includes energy and electron transfer processes, and their applications in these environmental issues.
Collapse
Affiliation(s)
- Pierre D. Harvey
- Département de chimie, Université de Sherbrooke, Sherbrooke, PQ, Canada, J1K 2R1, Canada
| |
Collapse
|
13
|
Yang K, Ye J, Zhao Y, Ge K, Cao J, Wang S, Zhang Z, Zhang Y, Yang Y. IO‐TiO
2
/PCN‐222 Heterostructure with a Tightly Connected Interface and Its Photocatalytic Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Yang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Jin Ye
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Yi Zhao
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Kai Ge
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiayu Cao
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Shuang Wang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Zhiheng Zhang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Yue Zhang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Yongfang Yang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
14
|
Kamanna K. Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999201117093848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights the application of biopolymers of natural α-amino acids and its
derived wild-type peptides employed as organocatalysts for the asymmetric synthesis of various important
compounds published by researchers across the globe. The α-amino acid with L-configuration
is available commercially in the pure form and plays a crucial role in enantioselective chiral
molecule synthesis. Out of twenty natural amino acids, only one secondary amine-containing proline
amino acid exhibited revolution in the field of organocatalysis because of its rigid structure
and the formation of an imine like transition state during the reaction, which leads to more stereoselectivity.
Hence, it is referred to as a simple enzyme in organocatalyst. Chiral enantioselective organic
molecule synthesis has been further discussed by employing oligopeptides derived from the
natural amino acids as a robust biocatalyst that replaced enzyme catalysts. The di-, tri, tetra-,
penta- and oligopeptide derived from the natural amino acids are demonstrated as a potential
organocatalyst, whose catalytic activity and mechanistic pathways are reviewed in the present paper.
Several choices of organocatalyst are developed to achieve a facile and efficient stereoselective
synthesis of many complex natural products with optically pure isomer. Subsequently, the researcher
developed green and sustainable heterogeneous catalytic system containing organocatalyst
immobilized onto solid inorganic support or porous material for accelerating reaction rate with
asymmetric one isomer product through the heterogeneous phase. Further, researchers developed
heterogeneous organocatalysts-Metal-Organic Frameworks (MOFs) that emerged as alternative
simple and facile heterogeneous catalysts for the bulk production and flow reactor for enantioselective
synthesis. This review compiled many outstanding discoveries in organocatalysts derivative of
amino acids, peptides and heterogenized-MOFs employed for many organic transformations in research
and industrial applications.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi -591156, Karnataka, India
| |
Collapse
|
15
|
Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0730-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Amini A, Khajeh M, Oveisi AR, Daliran S, Ghaffari-Moghaddam M, Delarami HS. A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Metzger KE, Moyer MM, Trewyn BG. Tandem Catalytic Systems Integrating Biocatalysts and Inorganic Catalysts Using Functionalized Porous Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kara E. Metzger
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Megan M. Moyer
- Department of Chemistry, The Citadel, Charleston, South Carolina 29409, United States
| | - Brian G. Trewyn
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
19
|
Günay Semerci T, Gönül İlkbaş, Gülmez B, Çimen Mutlu Y. Heterogenization of Porphyrin into PCN‐222 as Oxidation Catalysts: Comparison in Terms of Reusability. ChemistrySelect 2020. [DOI: 10.1002/slct.202003716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tuğçe Günay Semerci
- Department of Chemistry Faculty of Science Eskişehir Technical University 26470 Eskişehir Turkey
| | - Gönül İlkbaş
- Department of Chemistry Faculty of Science Anadolu University 26470 Eskişehir Turkey
| | - Berna Gülmez
- Department of Chemistry Faculty of Science Anadolu University 26470 Eskişehir Turkey
| | - Yasemin Çimen Mutlu
- Department of Chemistry Faculty of Science Eskişehir Technical University 26470 Eskişehir Turkey
| |
Collapse
|
20
|
Synthesis, In Silico and In Vitro Assessment of New Quinazolinones as Anticancer Agents via Potential AKT Inhibition. Molecules 2020; 25:molecules25204780. [PMID: 33080996 PMCID: PMC7594071 DOI: 10.3390/molecules25204780] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
A series of novel quinazolinone derivatives (2–13) was synthesized and examined for their cytotoxicity to HepG2, MCF-7, and Caco-2 in an MTT assay. Among these derivatives, compounds 4 and 9 exhibited significant cytotoxic activity against Caco-2, HepG2, and MCF-7 cancer cells. Compound 4 had more significant inhibitory effects than compound 9 on Caco-2, HepG2, and MCF-7 cell lines, with IC50 values of 23.31 ± 0.09, 53.29 ± 0.25, and 72.22 ± 0.14µM, respectively. The AKT pathway is one of human cancer’s most often deregulated signals. AKT is also overexpressed in human cancers such as glioma, lung, breast, ovarian, gastric, and pancreas. A molecular docking study was performed to analyze the inhibitory action of newly synthetic quinazolinone derivatives against Homo sapiens AKT1 protein. Molecular docking simulations were found to be in accordance with in vitro studies, and hence supported the biological activity. The results suggested that compounds 4 and 9 could be used as drug candidates for cancer therapy via its potential inhibition of AKT1 as described by docking study.
Collapse
|
21
|
Tabatabaii M, Khajeh M, Oveisi AR, Erkartal M, Sen U. Poly(lauryl methacrylate)-Grafted Amino-Functionalized Zirconium-Terephthalate Metal-Organic Framework: Efficient Adsorbent for Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples. ACS OMEGA 2020; 5:12202-12209. [PMID: 32548403 PMCID: PMC7271357 DOI: 10.1021/acsomega.0c00687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, a novel porous hybrid material, poly(lauryl methacrylate) polymer-grafted UiO-66-NH2 (UiO = University of Oslo), was synthesized for efficient extraction of polycyclic aromatic hydrocarbons (PAHs) from aqueous samples. The polymer end-tethered covalently to the MOF's surface was synthesized by surface-initiated atom transfer radical polymerization, revealing a distinct type of morphology. The adsorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N2 adsorption-desorption analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The analyses were carried out by gas chromatography-mass spectrometry. Parameters including the type and volume of the eluent, the amount of the adsorbent, and adsorption and desorption times were investigated and optimized. Under optimal conditions, the limit of detection, intraday precision, and interday precision were in the range of 3-8 ng L-1, 1.4-3.1, and 4.1-6.5%, respectively. The procedure was used for analysis of PAHs from natural water samples.
Collapse
Affiliation(s)
- Maryam Tabatabaii
- Department
of Chemistry, Faculty of Science, University
of Zabol, P.O. Box: 98615-538 Zabol, Iran
| | - Mostafa Khajeh
- Department
of Chemistry, Faculty of Science, University
of Zabol, P.O. Box: 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department
of Chemistry, Faculty of Science, University
of Zabol, P.O. Box: 98615-538 Zabol, Iran
| | - Mustafa Erkartal
- Department
of Materials Science and Nanotechnology Engineering, Abdullah Gul University, 38080 Kayseri, Turkey
| | - Unal Sen
- Department
of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, 26555 Eskisehir, Turkey
| |
Collapse
|
22
|
Costa E Silva R, Oliveira da Silva L, de Andrade Bartolomeu A, Brocksom TJ, de Oliveira KT. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein J Org Chem 2020; 16:917-955. [PMID: 32461773 PMCID: PMC7214915 DOI: 10.3762/bjoc.16.83] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
In this review we present relevant and recent applications of porphyrin derivatives as photocatalysts in organic synthesis, involving both single electron transfer (SET) and energy transfer (ET) mechanistic approaches. We demonstrate that these highly conjugated photosensitizers show increasing potential in photocatalysis since they combine both photo- and electrochemical properties which can substitute available metalloorganic photocatalysts. Batch and continuous-flow approaches are presented highlighting the relevance of enabling technologies for the renewal of porphyrin applications in photocatalysis. Finally, the reaction scale in which the methodologies were developed are highlighted since this is an important parameter in the authors' opinion.
Collapse
Affiliation(s)
- Rodrigo Costa E Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Luely Oliveira da Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Departamento de Ciências Naturais, Universidade do Estado do Pará, Marabá, PA, 68502-100, Brazil
| | | | - Timothy John Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | |
Collapse
|
23
|
Safaei Moghaddam Z, Kaykhaii M, Khajeh M, Oveisi AR. PCN-222 metal-organic framework: a selective and highly efficient sorbent for the extraction of aspartame from gum, juice, and diet soft drink before its spectrophotometric determination. BMC Chem 2020; 14:19. [PMID: 32206761 PMCID: PMC7085135 DOI: 10.1186/s13065-020-00674-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
In this paper, we describe synthesis and application of an iron porphyrinc metal-organic framework PCN-222(Fe) for solid phase extraction of aspartame, an artificial non-saccharine sweetener, from gum, juice and diet soft drink samples prior to its determination by spectrophotometry. The mesoporous MOF was synthesized solvo-thermally and characterized by Fourier transform-infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller techniques. To obtain the best extraction efficiency of aspartame, significant affecting parameters such as pH of sample solution, amount of the sorbent, type and volume of eluting solvent, and adsorption and desorption times were investigated and optimized. Under optimum conditions, the calibration graph for aspartame was linear in the range of 0.1 to 100.0 mg.L-1 and relative standard deviation of aspartame was 1.7% (n = 7). Limit of detection of method calculated as 0.019 mg.L-1 and the enrichment factor of 350 folds was obtained. Adsorption capacity of synthesized sorbent was found to be 356 mg.g-1. Hierarchical porosity, the eight terminal-OH groups of the Zr6 node, and hydrogen bonding possibly play vital role for selective adsorption of aspartame. The optimized method was successfully applied to the determination of aspartame in real samples with reasonable recoveries (> 98%).
Collapse
Affiliation(s)
- Zahra Safaei Moghaddam
- 1Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674 Iran
| | - Massoud Kaykhaii
- 1Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674 Iran
| | - Mostafa Khajeh
- 2Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Ali Reza Oveisi
- 2Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
24
|
Oveisi AR, Delarami HS, Khajeh M, Mirjahanshahi S, Haghani A, Daliran S, Ghaffari-Moghaddam M. Contributions of metalloporphyrin linkers and Zr6 nodes in gas adsorption on a series of bioinspired zirconium-based metal-organic frameworks: A computational study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Oudi S, Oveisi AR, Daliran S, Khajeh M, Teymoori E. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. J Colloid Interface Sci 2020; 561:782-792. [DOI: 10.1016/j.jcis.2019.11.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/06/2023]
|
26
|
Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. J Colloid Interface Sci 2020; 560:885-893. [DOI: 10.1016/j.jcis.2019.10.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
|
27
|
Zhang Y, Huang C, Mi L. Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Trans 2020; 49:14723-14730. [DOI: 10.1039/d0dt03025b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we have reviewed the development of MOFs anchored with acidic and/or basic sites as heterogeneous catalysts for tandem/cascade (domino) reactions over the past five years.
Collapse
Affiliation(s)
- Yingying Zhang
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- China
| | - Chao Huang
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- China
| | - Liwei Mi
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- China
| |
Collapse
|
28
|
Preparation and Application of Ordered Mesoporous Metal Oxide Catalytic Materials. CATALYSIS SURVEYS FROM ASIA 2019. [DOI: 10.1007/s10563-019-09288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed‐Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902229] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry Faculty of Sciences Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran
| | - Ali Morsali
- Department of Chemistry Faculty of Sciences Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran
| | | | - Hermenegildo Garcia
- Dep. de Quimica y Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia Valencia 46022 Spain
| |
Collapse
|
30
|
Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed-Metal MOFs: Unique Opportunities in Metal-Organic Framework (MOF) Functionality and Design. Angew Chem Int Ed Engl 2019; 58:15188-15205. [PMID: 30977953 DOI: 10.1002/anie.201902229] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 01/14/2023]
Abstract
Mixed-metal metal-organic frameworks (MM-MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM-MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM-MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM-MOFs respect to related single-metal MOFs. Emphasis is made on the use of MM-MOFs as catalysts for tandem reactions.
Collapse
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | | | - Hermenegildo Garcia
- Dep. de Quimica y, Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia, Valencia, 46022, Spain
| |
Collapse
|
31
|
Oveisi AR, Karimi P, Delarami HS, Daliran S, Khorramabadi-Zad A, Khajeh M, Sanchooli E, Ghaffari-Moghaddam M. New porphyrins: synthesis, characterization, and computational studies. Mol Divers 2019; 24:335-344. [PMID: 31062142 DOI: 10.1007/s11030-019-09955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
New trans-A2B2-porphyrins substituted at phenyl positions were synthesized from 4-methylphthalic acid as a starting material through sequential multistep reactions. These macrocycles were characterized by 1H NMR, 13C NMR, 19F NMR, 1H-1H COSY NMR, and MALDI-TOF mass spectrometry. Computational studies were performed on the porphyrins to investigate various factors such as structural features, electronic energy, energy gaps, and aromaticity. Energy band gap values of these compounds especially N-hydroxyphthalimide-functionalized porphyrins were small that makes them as good candidates for solar cell systems and photocatalysis. Relationships between electronic energies and aromaticity of the compounds were then investigated. The data indicated that the aromaticity features at the center of two series of these compounds (fluorinated and non-fluorinated porphyrins) were in the opposite manner.
Collapse
Affiliation(s)
- Ali Reza Oveisi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Saba Daliran
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | | | - Mostafa Khajeh
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Esmael Sanchooli
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | |
Collapse
|
32
|
Zhong YQ, Hossain MS, Chen Y, Fan QH, Zhan SZ, Liu HY. A comparative study of electrocatalytic hydrogen evolution by iron complexes of corrole and porphyrin from acetic acid and water. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00307-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|