1
|
Zhang D, Bu J, Dou X, Yan Y, Liu Q, Wang X, Sun Z, Guo G, Zheng K, Deng J. Ultra-Large Two-Dimensional Metal Nanowire Networks by Microfluidic Laminar Flow Synthesis for Formic Acid Electrooxidation. Angew Chem Int Ed Engl 2024; 63:e202408765. [PMID: 38797705 DOI: 10.1002/anie.202408765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Despite the great research interest in two-dimensional metal nanowire networks (2D MNWNs) due to their large specific surface area and abundance of unsaturated coordination atoms, their controllable synthesis still remains a significant challenge. Herein, a microfluidics laminar flow-based approach is developed, enabling the facile preparation of large-scale 2D structures with diverse alloy compositions, such as PtBi, AuBi, PdBi, PtPdBi, and PtAuCu alloys. Remarkably, these 2D MNWNs can reach sizes up to submillimeter scale (~220 μm), which is significantly larger than the evolution from the 1D or 3D counterparts that typically measure only tens of nanometers. The PdBi 2D MNWNs affords the highest specific activity for formic acid (2669.1 mA mg-1) among current unsupported catalysts, which is 103.5 times higher than Pt-black, respectively. Furthermore, in situ Fourier transform infrared (FTIR) experiments provide comprehensive evidence that PdBi 2D MNWNs catalysts can effectively prevent CO* poisoning, resulting in exceptional activity and stability for the oxidation of formic acid.
Collapse
Affiliation(s)
- Dongtang Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing, 100124, PR China
| | - Jiahui Bu
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiangnan Dou
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Qiqi Liu
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Zaicheng Sun
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, Beijing University of Technology, Beijing, 100124, PR China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing, 100124, PR China
| | - Jiguang Deng
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
2
|
Li T, Liu Y, Jia R, Huang L. Fabrication of heterogeneous bimetallic nanochains through photochemical welding for promoting the electrocatalytic hydrogen evolution reaction. J Colloid Interface Sci 2023; 656:399-408. [PMID: 38000252 DOI: 10.1016/j.jcis.2023.11.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Heterogeneous bimetallic nanochains (NCs) have gained significant attention in the field of catalysis due to their abundant active sites, multi-component synergistic catalytic, and exotic electronic structures. Here, we present a novel approach to synthesize one-dimensional heterogeneous bimetallic nanochains using a local surface plasmon resonance (LSPR) based strategy of liquid-phase photochemical welding method containing self-assembly and subsequent welding processes. Initially, we introduce additives that facilitate the self-assembly and alignment of Au nanoparticles (NPs) into orderly lines. Subsequently, the LSPR effect of the Au NPs is stimulated by light, enabling the second metal precursor to overcome the energy barrier and undergo photodeposition in the gap between the arranged Au NPs, thereby connecting the nano-metal particles. This strategy can be extended to the photochemical welding of Au NPs-Ag and Au NRs. Using electrocatalytic hydrogen evolution reaction (HER) as a proof-of-concept application, the obtained one-dimensional structure of Au5Pt1 NCs exhibit promoted HER performances, where the mass activity of the Au5Pt1 nanochains is found to be 4.8 times higher than that of Au5Pt1 NPs and 10.4 times higher than that of commercial 20 wt% Pt/C catalysts. The promoted HER performance is benefited from the electron conduction ability and abundant active sites.
Collapse
Affiliation(s)
- Ting Li
- Jiangxi Province Key Laboratory of Polymer Preparation and Processing, School of Physical Science and Intelligent Education, Shangrao Normal University, Shangrao 334001, PR China.
| | - Yidan Liu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rongrong Jia
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
3
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Sofian M, Nasim F, Ali H, Nadeem MA. Pronounced effect of yttrium oxide on the activity of Pd/rGO electrocatalyst for formic acid oxidation reaction. RSC Adv 2023; 13:14306-14316. [PMID: 37197672 PMCID: PMC10184137 DOI: 10.1039/d3ra01929b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
A highly efficient and stable electrocatalyst comprised of yttrium oxide (Y2O3) and palladium nanoparticles has been synthesized via a sodium borohydride reduction approach. The molar ratio of Pd and Y was varied to fabricate various electrocatalysts and the oxidation reaction of formic acid was checked. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) are used to characterize the synthesized catalysts. Among the synthesized catalysts (PdyYx/rGO), the optimized catalyst i.e., Pd6Y4/rGO exhibits the highest current density (106 mA cm-2) and lowest onset potential compared to Pd/rGO (28.1 mA cm-2) and benchmark Pd/C (21.7 mA cm-2). The addition of Y2O3 to the rGO surface results in electrochemically active sites due to the improved geometric structure and bifunctional components. The electrochemically active surface area 119.4 m2 g-1 is calculated for Pd6Y4/rGO, which is ∼1.108, ∼1.24, ∼1.47 and 1.55 times larger than Pd4Y6/rGO, Pd2Y8/rGO, Pd/C and Pd/rGO, respectively. The redesigned Pd structures on Y2O3-promoted rGO give exceptional stability and enhanced resistance to CO poisoning. The outstanding electrocatalytic performance of the Pd6Y4/rGO electrocatalyst is ascribed to uniform dispersion of small size palladium nanoparticles which is possibly due to the presence of yttrium oxide.
Collapse
Affiliation(s)
- Muhammad Sofian
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Fatima Nasim
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Hassan Ali
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
- Pakistan Academy of Sciences 3-Constitution Avenue Sector G-5/2 Islamabad Pakistan
| |
Collapse
|
5
|
Yang P, Zhang L, Wei X, Dong S, Cao W, Ma D, Ouyang Y, Xie Y, Fei J. A "Special" Solvent to Prepare Alloyed Pd 2Ni 1 Nanoclusters on a MWCNT Catalyst for Enhanced Electrocatalytic Oxidation of Formic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:755. [PMID: 36839122 PMCID: PMC9963789 DOI: 10.3390/nano13040755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Herein, an electrocatalyst with Pd2Ni1 nanoclusters, supporting multiwalled carbon nanotubes (MWCNTs) (referred to Pd2Ni1/CNTs), was fabricated with deep eutectic solvents (DES), which simultaneously served as reducing agent, dispersant, and solvent. The mass activity of the catalyst for formic acid oxidation reaction (FAOR) was increased nearly four times compared to a Pd/C catalyst. The excellent catalytic activity of Pd2Ni1/CNTs was ascribed to the special nanocluster structure and appropriate Ni doping, which changed the electron configuration of Pd to reduce the d-band and to produce a Pd-Ni bond as a new active sites. These newly added Ni sites obtained more OH- to release more effective active sites by interacting with the intermediate produced in the first step of FAOR. Hence, this study provides a new method for preparing a Pd-Ni catalyst with high catalytic performance.
Collapse
Affiliation(s)
- Pingping Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Li Zhang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xuejiao Wei
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Shiming Dong
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Wenting Cao
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Dong Ma
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Yuejun Ouyang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418008, China
| | - Yixi Xie
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Junjie Fei
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
6
|
Yang P, Zhang L, Wei X, Dong S, Ouyang Y. Pd 3Co 1 Alloy Nanocluster on the MWCNT Catalyst for Efficient Formic Acid Electro-Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4182. [PMID: 36500805 PMCID: PMC9740167 DOI: 10.3390/nano12234182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this study, the Pd3Co1 alloy nanocluster from a multiwalled carbon nanotube (MWCTN) catalyst was fabricated in deep eutectic solvents (DESs) (referred to Pd3Co1/CNTs). The catalyst shows a better mass activity towards the formic acid oxidation reaction (FAOR) (2410.1 mA mgPd-1), a better anti-CO toxicity (0.36 V) than Pd/CNTs and commercial Pd/C. The improved performance of Pd3Co1/CNTs is attributed to appropriate Co doping, which changed the electronic state around the Pd atom, lowered the d-band of Pd, formed a new Pd-Co bond act at the active sites, affected the adsorption of the toxic intermediates and weakened the dissolution of Pd; moreover, with the assistance of DES, the obtained ultrafine Pd3Co1 nanoalloy exposes more active sites to enhance the dehydrogenation process of the FAOR. The study shows a new way to construct a high-performance Pd-alloy catalyst for the direct formic acid fuel cell.
Collapse
|
7
|
Dong Z, Jiang X, Zhang W, Wang J, Xu GR, Wu Z, Li G, Wang L. Organic phosphoric acid induced coral-like palladium network nanostructures for superior polyhydric alcohols electrocatalysis. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Chemically prepared Pd-Cd alloy nanocatalysts as the highly active material for formic acid electrochemical oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
He P, Liu X, Yang X, Yan Z, Chen Y, Tian Z, Tian Q. Two-Step Fabrication of Carbon-Supported Cu@Pd Nanoparticles for Electro-Oxidation of Formic Acid. Catal Letters 2022. [DOI: 10.1007/s10562-022-04020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zeng T, Meng X, Huang H, Zheng L, Chen H, Zhang Y, Yuan W, Zhang LY. Controllable Synthesis of Web-Footed PdCu Nanosheets and Their Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107623. [PMID: 35152558 DOI: 10.1002/smll.202107623] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Indexed: 05/13/2023]
Abstract
Morphological control of noble-metal-based nanocrystals has attracted enormous attention because their catalytic behaviors can be optimized well by adjusting the size and shape. Herein, the controllable synthesis of web-footed PdCu nanosheets via a facile surfactant-free method is reported. It is discovered that the Cu(II) precursor in this synthetic system displays a critical role in growing branches along the lateral of nanosheets. This work demonstrates a Pd-based alloy nanoarchitecture for efficient and stable electrocatalysis of both ethanal and formic acid oxidation reactions.
Collapse
Affiliation(s)
- Tiantian Zeng
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Meng
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Haowei Huang
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Linwei Zheng
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Haibo Chen
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Yun Zhang
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Weiyong Yuan
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
11
|
Nguyen THT, Lee MW, Hong S, Ahn HS, Kim BK. Electrosynthesis of palladium nanocatalysts using single droplet reactors and catalytic activity for formic acid oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Li T, Jiang W, Liu Y, Jia R, Shi L, Huang L. Localized surface plasmon resonance induced assembly of bimetal nanochains. J Colloid Interface Sci 2021; 607:1888-1897. [PMID: 34695738 DOI: 10.1016/j.jcis.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
Bimetal nanochains (NCs) are attracting increasing attention in the fields of catalysis and electrocatalysis due to the synergistic effects in electronic and optical properties, but the fabrication of bimetal NCs remains challenging. Here, we report a general strategy named "nucleation in the irradiation then growth in the dark" for the preparation of Au/M (second metal) NCs. In the irradiation stage, the localized surface plasmon resonance (LSPR) effect of Au NPs is excited to overcome the nucleation energy barrier for the deposition of second metals (Pt, Ag and Pd). In the followed dark process, the preferential growth of second metals on the existed nucleus leads to the formation of nanochain rather than the core/shell nanostructure. In the model reaction of electrocatalytic hydrogen evolution, the optimized Au/Pt NCs showed much better performance compared with the commercial Pt/C.
Collapse
Affiliation(s)
- Ting Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China; Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Wentao Jiang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yidan Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China; Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Rongrong Jia
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liyi Shi
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
13
|
Ding C, Dong F, Tang Z. Construction of hollow carbon polyhedron supported Pt catalyst for methanol electrocatalytic oxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Yang B, Zhang W, Hu S, Liu C, Wang X, Fan Y, Jiang Z, Yang J, Chen W. Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J Colloid Interface Sci 2021; 600:503-512. [PMID: 34023708 DOI: 10.1016/j.jcis.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022]
Abstract
Through a two-way control of hexadecyl trimethyl ammonium bromide (CTAB) and hydrochloric acid (HCl), the PdCu nanoalloys with branched structures are synthesized in one step by hydrothermal reduction and used as electrocatalysts for formic acid oxidation reaction (FAOR). In this two-way control strategy, the CTAB is used as a structure-oriented surfactant, while a certain amount of HCl is used to control the reaction kinetics for achieving gradual growth of multi-dendritic structures. The characterizations including scanning transmission electron microscope (STEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggest that PdCu nanoalloys with unique multi-dendritic branches have favorable electronic structure and lattice strain for electrocatalyzing the oxidation of formic acid. In specific, among the electrocatalysts with different Pd/Cu ratios, the Pd1Cu1 branched nanoalloys have the largest electrochemically active surface area (ECSA) and the best performance for the FAOR. The catalytic activity of the Pd1Cu1 branched nanoalloys is 2.4 times that of commercial Pd black. After the chronoamperometry test, the Pd1Cu1 branched nanoalloys still maintain their original morphologies and higher current density than that of the commercial Pd black. In addition, in the CO-stripping tests, the initial oxidation potential and the oxidation peak potential of the PdCu branched nanoalloys for CO adsorption are lower than those of commercial Pd balck, evincing their better anti-poisoning performance.
Collapse
Affiliation(s)
- Bo Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wanqing Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shenglan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chengzhou Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoqu Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhe Jiang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No.19A.Yuquan.Road Beijing 100049, China; Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu 211100, China.
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
15
|
Wang W, He T, Yang X, Liu Y, Wang C, Li J, Xiao A, Zhang K, Shi X, Jin M. General Synthesis of Amorphous PdM (M = Cu, Fe, Co, Ni) Alloy Nanowires for Boosting HCOOH Dehydrogenation. NANO LETTERS 2021; 21:3458-3464. [PMID: 33825464 DOI: 10.1021/acs.nanolett.1c00074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noble metal-based nanomaterials with amorphous structures are promising candidates for developing efficient electrocatalysts. However, their synthesis remains a significant challenge, especially under mild conditions. In this paper, we report a general strategy for preparing amorphous PdM nanowires (a-PdM NWs, M = Fe, Co, Ni, and Cu) at low temperatures by exploiting glassy non-noble metal (M) nuclei generated by special ligand adsorption as the amorphization dictator. When evaluated as electrocatalysts toward formic acid oxidation, a-PdCu NWs can deliver the mass and specific activities as high as 2.93 A/mgPd and 5.33 mA/cm2, respectively; these are the highest values for PdCu-based catalysts reported thus far, far surpassing the crystalline-dominant counterparts and commercial Pd/C. Theoretical calculations suggest that the outstanding catalytic performance of a-PdCu NWs arises from the amorphization-induced high surface reactivity, which can efficiently activate the chemically stable C-H bond and thereby significantly facilitate the dissociation of HCOOH.
Collapse
Affiliation(s)
- Weicong Wang
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tianou He
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Yang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yaming Liu
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chaoqi Wang
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiao Li
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Andong Xiao
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ke Zhang
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiatong Shi
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mingshang Jin
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
16
|
Goswami C, Saikia H, Jyoti Borah B, Jyoti Kalita M, Tada K, Tanaka S, Bharali P. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway. J Colloid Interface Sci 2021; 587:446-456. [PMID: 33383434 DOI: 10.1016/j.jcis.2020.11.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Tuning composition of Pd-based bimetallic electrocatalysts of high stability and durability is of great importance in energy-related reactions. This study reports the remarkable electrocatalytic performance of carbon-supported bimetallic Pd-Cu alloy nanoparticles (NPs) towards formic acid oxidation (FAO) and oxygen reduction reaction (ORR). Among various bimetallic compositions, Pd3Cu/C alloy NPs exhibits the best FAO and ORR activity. During FAO reaction, Pd3Cu/C alloy NPs exhibits a peak with a current density of 28.33 mA cm-2 and a potential of 0.2 V (vs. Ag/AgCl) which is higher than that of the other PdCu compositions and standard 20 wt% Pd/C catalyst. Meanwhile, the onset potential (-0.09 V), half-wave potential (-0.18 V), limiting current density at 1600 rpm (-4.9 mA cm-2) and Tafel slope (64 mV dec-1) values of Pd3Cu/C alloy NPs validate its superiority over the conventional 20 wt% Pt/C catalyst for ORR. Experimental and DFT studies have confirmed that the enhanced activity can be attributed to the electronic effect that arises after Cu alloying which causes a downshift of Pd d-band center and structural effect that produces highly dispersed NPs over the carbon matrix with high electrochemically active surface area.
Collapse
Affiliation(s)
- Chiranjita Goswami
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Himadri Saikia
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India; Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785 006, Assam, India
| | - Biraj Jyoti Borah
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Manash Jyoti Kalita
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Kohei Tada
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Shingo Tanaka
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Pankaj Bharali
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India.
| |
Collapse
|
17
|
Hierarchical defective palladium-silver alloy nanosheets for ethanol electrooxidation. J Colloid Interface Sci 2020; 586:200-207. [PMID: 33208247 DOI: 10.1016/j.jcis.2020.10.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Tuning the chemical composition and surface structure of electrodes is demonstrated as a feasible and effective strategy to tailor advanced catalysts for energy electrocatalysis. In this work, hierarchical palladium-silver alloy nanosheets (PdAg NS) with the thickness ~7 atoms and rich atomic defects are successfully prepared, using the carbon monoxide (CO) confinement approach. The optimized Pd7Ag3 NS/C exhibits 8.8 times higher catalytic peak current density and much better stability toward ethanol electrooxidation than Pd NS/C catalyst. The catalytic enhancement mechanism could be attributed to the synergetic effects among optimized electronic structure of Pd, novel architecture, and rich atomic defects.
Collapse
|
18
|
Jiao H, Li Y, Gao K, Zhao J, Wang C, Li M, Na P. Efficient removal of radioactive iodide by three-dimensional Cu@Cu O: An adsorption and electrocatalytic oxidation coupling process. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Li M, Yuan Y, Yao Z, Gao L, Zhang J, Huang H. Applications of Metal Nanocrystals with Twin Defects in Electrocatalysis. Chem Asian J 2020; 15:3254-3265. [DOI: 10.1002/asia.202000891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Mengfan Li
- College of Materials Science and Engineering Hunan University, Changsha Hunan 410082 P. R. China
| | - Yuliang Yuan
- College of Materials Science and Engineering Hunan University, Changsha Hunan 410082 P. R. China
| | - Zhaoyu Yao
- College of Materials Science and Engineering Hunan University, Changsha Hunan 410082 P. R. China
| | - Lei Gao
- College of Materials Science and Engineering Hunan University, Changsha Hunan 410082 P. R. China
| | - Jiawei Zhang
- College of Materials Science and Engineering Hunan University, Changsha Hunan 410082 P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering Hunan University, Changsha Hunan 410082 P. R. China
| |
Collapse
|
20
|
Ge M, Yuan W, Wang K, He J, Xi W, Luo J. Anomalous detwinning in constrained Cu nanoparticles. NANOSCALE 2020; 12:14831-14837. [PMID: 32633306 DOI: 10.1039/d0nr01407a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, the detwinning process in a 9 nm graphene-constrained Cu nanoparticle was investigated at 1009 °C via in situ high-resolution transmission electron microscopy. Instead of the expected reverse glide of the twinning dislocations, two new twins were formed; the four twin zones rotated synergistically before vanishing. Furthermore, the twin boundary migration energy and the system energy were increased continuously with detwinning. The increased resistance to twin boundary migration in constrained nanoparticles enriches our understanding of the twinning mechanism and may facilitate the design of high-strength and high-ductility nanomaterials.
Collapse
Affiliation(s)
- Mengke Ge
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | | | | | | | | | | |
Collapse
|
21
|
High Active PdSn Binary Alloyed Catalysts Supported on B and N Codoped Graphene for Formic Acid Electro-Oxidation. Catalysts 2020. [DOI: 10.3390/catal10070751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A series of PdSn binary catalysts with varied molar ratios of Pd to Sn are synthesized on B and N dual-doped graphene supporting materials. The catalysts are characterized by X-ray diffraction (XRD) and Transmission electron microscopy (TEM). Formic acid electro-oxidation reaction is performed on these catalysts, and the results reveal that the optimal proportion of Pd:Sn is 3:1. X-ray photoelectron spectroscopy (XPS) measurements show that when compared with 3Pd1Sn/graphene, B and N co-doping into the graphene sheet can tune the electronic structure of graphene, favoring the formation of small-sized metallic nanoparticles with good dispersion. On the other hand, when compared with the monometallic counterparts, the incorporation of Sn can generate oxygenated species that help to remove the intermediates, exposing more active Pd sites. Moreover, the electrochemical tests illustrate that 3Pd1Sn/BN-G catalyst with a moderate amount of Sn exhibits the best catalytic activity and stability on formic acid electro-oxidation, owing to the synergistic effect of the Sn doping and the B, N co-doping graphene substrate.
Collapse
|
22
|
Bhalothia D, Huang TH, Chou PH, Chen PC, Wang KW, Chen TY. CO-Reductive and O 2-Oxidative Annealing Assisted Surface Restructure and Corresponding Formic Acid Oxidation Performance of PdPt and PdRuPt Nanocatalysts. Sci Rep 2020; 10:8457. [PMID: 32439867 PMCID: PMC7242419 DOI: 10.1038/s41598-020-65393-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022] Open
Abstract
Formic acid oxidation reaction (FAOR) at anode counterpart incurs at substantial high overpotential, limiting the power output efficiency of direct formic acid fuel cells (DFAFCs). Despite intense research, the lack of high-performance nanocatalysts (NCs) for FAOR remains a challenge in realizing DFAFC technologies. To surmount the overpotential losses, it is desirable to have NCs to trigger the FAOR as close to the reversible conditions (i.e. with over-potential loss as close to zero as possible). Herein, Pd-based binary and ternary NCs consisting of PdPt and PdRuPt have been synthesized via the polyol reduction method on the carbon support. As prepared PdPt and PdRuPt NCs were further subjected to heat treatment (annealed) in CO (namely PdPt-CO and PdRuPt-CO) and O2 (namely PdPt-O2 and PdRuPt-O2) atmosphere at 473 K temperature. By cross-referencing results of electron microscopy and X-ray spectroscopy together with electrochemical analysis, the effects of heat treatment under CO-reductive and O2-oxidative conditions towards FAOR were schematically elucidated. Of special relevance, the mass activity (MA) of PdPt-CO, PdPt-O2, PdRuPt-CO, and PdRuPt-O2 NCs is 1.7/2.0, 1.3/2.2, 1.1/5.5, and 0.9/4.7 Amg-1 in the anodic/cathodic scan, respectively, which is 2~4-folds improved comparative to of as-prepared PdPt (1.0/1.9 Amg-1 in anodic/cathodic scan, respectively) and PdRuPt (0.9/1.4 Amg-1 in anodic/cathodic scan, respectively) NCs. Meanwhile, after chronoamperometric (CA) stability test up to 2000 s, PdPt-CO (72 mAmg-1) and PdRuPt-CO (213 mAmg-1) NCs exhibit higher MA compared to as-prepared PdPt (54 mAmg-1) and PdRuPt (62 mAmg-1) NCs, which is attributed to the increase of surface Pt composition, especially for PdRuPt-CO NC. Besides, the stability of PdPt-O2 (15 mAmg-1) and PdRuPt-O2 (22 mAmg-1) NCs is deteriorated as compared to that of as-prepared NCs due to severe oxidation in O2 atmosphere. Of utmost importance, we developed a ternary PdRuPt catalyst with ultra-low Pt content (~2 wt.%) and significantly improved FAOR performance than pure Pt catalysts. Moreover, we demonstrated that the FAOR performance can be further enhanced by more than 30% via a unique CO annealing treatment.
Collapse
Affiliation(s)
- Dinesh Bhalothia
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Hsi Huang
- Institute of Materials Science and Engineering, National Central University, Taoyuan City, 32001, Taiwan
| | - Pai-Hung Chou
- Institute of Materials Science and Engineering, National Central University, Taoyuan City, 32001, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan City, 32001, Taiwan.
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
23
|
Ding J, Liu Z, Liu X, Liu B, Liu J, Deng Y, Han X, Hu W, Zhong C. Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angew Chem Int Ed Engl 2020; 59:5092-5101. [PMID: 31886942 DOI: 10.1002/anie.201914649] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Indexed: 12/22/2022]
Abstract
Developing superior electrocatalysts for formic acid oxidation (FAO) is the most crucial step in commercializing direct formic acid fuel cells. Herein, we electrodeposited palladium membranes with periodically ordered mesoporosity obtained by asymmetrically replicating the bicontinuous cubic phase structure of a lyotropic liquid-crystal template. The Pd membrane with the largest periodicity and highest degree of order delivered up to 90.5 m2 g-1 of electrochemical active surface area and 3.34 A mg-1 electrocatalysis capability towards FAO, 3.8 and 7.8 times the values of the commercial Pd/C catalyst, respectively. By controlling the temperature and potential of the electrodeposition procedure, the periodicity area and order degree of the mesoporosity are highly tunable. These Pd membranes gave prototype formic acid fueled cells with 4.3 and 2.4 times the maximum current and power density of the commercial Pd/C catalyst.
Collapse
Affiliation(s)
- Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhi Liu
- State Key Laboratory of Metal Matrix Composites, Department of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
24
|
Rupa Kasturi P, Harivignesh R, Lee YS, Kalai Selvan R. Polyol assisted formaldehyde reduction of bi-metallic Pt-Pd supported agro-waste derived carbon spheres as an efficient electrocatalyst for formic acid and ethylene glycol oxidation. J Colloid Interface Sci 2020; 561:358-371. [PMID: 31839268 DOI: 10.1016/j.jcis.2019.10.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/28/2023]
Abstract
This report explains, (i) the preparation of carbon spheres (CS) from agro-waste through hydrothermal carbonization (HTC) followed by high temperature carbonization, (ii) the decoration of bi-metallic Pt-Pd nanoparticles (Pt-Pd NPs) with different compositions (Pt/C, Pt0.5Pd1/C, Pt1Pd1/C and Pt1Pd0.5/C, Pd/C) on the carbon by ethylene glycol solvated polyol assisted formaldehyde reduction method and (iii) subsequently used as the electrocatalyst for formic acid (FA) and ethylene glycol (EG) electro-oxidation. The structural and morphological properties of the electrocatalysts were studied using advanced physicochemical characterization techniques. The obtained results well evidence the homogeneous dispersion of Pt-Pd NPs on the surface of the carbon. Especially, Pt0.5Pd1/C exhibited excellent electrocatalytic property towards formic acid electro-oxidation reaction (FAOR) with a higher current density (256 mA cm-2) and stability due to "third body effect". On the other hand, Pt1Pd0.5/C expressed superior electrochemical performance towards ethylene glycol electro-oxidation reaction (EGOR) due to the strong interaction between high Pt content and Pd. Hence, this work reveals the improved electrocatalytic performance of bi-metallic Pt-Pd NPs supported biomass-derived carbon as a promising anodic electrocatalyst towards FAOR and EGOR.
Collapse
Affiliation(s)
- Palanisamy Rupa Kasturi
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Ramasamy Harivignesh
- Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Yun Sung Lee
- Faculty of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, South Korea
| | - Ramakrishnan Kalai Selvan
- Energy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
25
|
Jiang H, Liu L, Zhao K, Liu Z, Zhang X, Hu S. Effect of pyridinic- and pyrrolic-nitrogen on electrochemical performance of Pd for formic acid electrooxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Ding J, Liu Z, Liu X, Liu B, Liu J, Deng Y, Han X, Hu W, Zhong C. Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)School of Materials Science and EngineeringTianjin University Tianjin 300072 China
| | - Zhi Liu
- State Key Laboratory of Metal Matrix CompositesDepartment of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)School of Materials Science and EngineeringTianjin University Tianjin 300072 China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)School of Materials Science and EngineeringTianjin University Tianjin 300072 China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)School of Materials Science and EngineeringTianjin University Tianjin 300072 China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin University Tianjin 300072 China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin University Tianjin 300072 China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)School of Materials Science and EngineeringTianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin University Tianjin 300072 China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education)School of Materials Science and EngineeringTianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Composite and Functional MaterialsSchool of Materials Science and EngineeringTianjin University Tianjin 300072 China
| |
Collapse
|
27
|
Geng D, Zhu S, Chai M, Zhang Z, Fan J, Xu Q, Min Y. PdxFey alloy nanoparticles decorated on carbon nanofibers with improved electrocatalytic activity for ethanol electrooxidation in alkaline media. NEW J CHEM 2020. [DOI: 10.1039/c9nj06086c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We prepared bimetallic PdxFey alloy nanoparticles/carbon nanofiber composites with different Pd/Fe mole ratios and showed their advantage as a potential anode catalyst in ethanol fuel cells.
Collapse
Affiliation(s)
- Dan Geng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Mengzhu Chai
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Zhengyang Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| |
Collapse
|
28
|
Kumar A, Mohammadi MM, Swihart MT. Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures. NANOSCALE 2019; 11:19058-19085. [PMID: 31433427 DOI: 10.1039/c9nr05835d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Palladium-based nanostructures have attracted the attention of researchers due to their useful catalytic properties and unique ability to form hydrides, which finds application in hydrogen storage and hydrogen detection. Palladium-based nanowires have some inherent advantages over other Pd nanomaterials, combining high surface-to-volume ratio with good thermal and electron transport properties, and exposing high-index crystal facets that can have enhanced catalytic activity. Over the past two decades, both synthesis methods and applications of 1D palladium nanostructures have advanced greatly. In this review, we start by discussing different types of 1D palladium nanostructures before moving on to the different synthesis approaches that can produce them. Next, we discuss factors including kinetic vs. thermodynamic control of growth, oxidative etching, and surface passivation that affect palladium nanowire synthesis. We also review efforts to gain insight into growth mechanisms using different characterization tools. We discuss the effects of concentration of capping agents, reducing agents, metal halides, pH, and sacrificial oxidation on the growth of Pd-based nanowires in solution, from shape control, to yield, to aspect ratio. Various applications of palladium and palladium alloy nanowires are then discussed, including electrocatalysis, hydrogen storage, and sensing of hydrogen and other chemicals. We conclude with a summary and some perspectives on future research directions for this category of nanomaterials.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
29
|
Zhang LY, Ouyang Y, Wang S, Wu D, Jiang M, Wang F, Yuan W, Li CM. Perforated Pd Nanosheets with Crystalline/Amorphous Heterostructures as a Highly Active Robust Catalyst toward Formic Acid Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904245. [PMID: 31617305 DOI: 10.1002/smll.201904245] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Perforated ultrathin Pd nanosheets with crystalline/amorphous heterostructures are rationally synthesized to offer a large electrochemically active surface area of 172.6 m2 g-1 and deliver a 5.6 times higher apparent reaction rate in comparison to commercial Pd/C, thus offering a facile confined growth method to generate superior catalysts.
Collapse
Affiliation(s)
- Lian Ying Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yirui Ouyang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Shuo Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Diben Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mengchao Jiang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Fengqian Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Weiyong Yuan
- Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
- Institute of Cross-field Science, College of Life Science, Qingdao University, Qingdao, 266071, P. R. China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215003, P. R. China
| |
Collapse
|
30
|
Caglar A, Ulas B, Cogenli MS, Yurtcan AB, Kivrak H. Synthesis and characterization of Co, Zn, Mn, V modified Pd formic acid fuel cell anode catalysts. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Wu D, Niu Y, Wang C, Wu H, Li Q, Chen Z, Xu B, Li H, Zhang LY. γ-Fe2O3 nanoparticles stabilized by holey reduced graphene oxide as a composite anode for lithium-ion batteries. J Colloid Interface Sci 2019; 552:633-638. [DOI: 10.1016/j.jcis.2019.05.091] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
|
32
|
Yazdan-Abad MZ, Alfi N, Farsadrooh M, Kerman K, Noroozifar M. Deposition of palladium-copper nanostructure on reduced graphene oxide by a simple method toward formic acid oxidation. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Wang P, Zhang M, Liu Y, Wang L, Lv Q, Xu D, Liu X, Wang G, Yang W, Wang P, Yu T, Xing S. One‐step synthesis of hydrophilic graphene‐Fe
3
O
4
‐PVA composite film: Micromorphology and performance. J Appl Polym Sci 2019. [DOI: 10.1002/app.48174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengjun Wang
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
- College of Environmental and Chemical EngineeringYanshan University Qinhuangdao 066004 China
| | - Mengyi Zhang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical BiologyNankai University Tianjin 300350 China
| | - Yang Liu
- College of Environmental and Chemical EngineeringYanshan University Qinhuangdao 066004 China
| | - Liqiu Wang
- College of Environmental and Chemical EngineeringYanshan University Qinhuangdao 066004 China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of ChemistryNankai University Tianjin 300071 China
| | - Qiulan Lv
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
- Institute of Sports Medicine and HealthQingdao University Qingdao 266003 China
- Shandong Orthopaedics and Traumatology Institute Qingdao 266003 China
| | - Daxing Xu
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
| | - Xiu Liu
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
| | - Guangtao Wang
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
| | - Wan Yang
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
| | - Pengchen Wang
- Qingdao Haier Air Conditioner Limited General Company Qingdao 266103 China
| | - Tengbo Yu
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
- Institute of Sports Medicine and HealthQingdao University Qingdao 266003 China
| | - Shichao Xing
- The Affiliated Hospital of Qingdao UniversityQingdao University Qingdao 266003 China
- Institute of Sports Medicine and HealthQingdao University Qingdao 266003 China
- Shandong Orthopaedics and Traumatology Institute Qingdao 266003 China
- School of Cardiovascular Medicine and Science, King's College LondonBHF Centre London SE5 9NU UK
| |
Collapse
|
34
|
Arulmani S, Kumar PV, Landi G, Anandan S. Palladium/Copper Nanoalloy Supported on Carbon Nanotubes for the Electrooxidation of Methanol and Ethylene Glycol. ChemistrySelect 2019. [DOI: 10.1002/slct.201901234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Subramanian Arulmani
- Department of ChemistryNational Institute of Technology Tiruchirappalli India- 620 015
- Department of Medicinal and Applied ChemistryKaohsiung Medical University Kaohsiung City- 807 Taiwan
- Research Center for Environmental MedicineKaohsiung Medical University Kaohsiung City- 807 Taiwan
| | - Ponnusamy Vinoth Kumar
- Department of Medicinal and Applied ChemistryKaohsiung Medical University Kaohsiung City- 807 Taiwan
- Research Center for Environmental MedicineKaohsiung Medical University Kaohsiung City- 807 Taiwan
| | - Giovanni Landi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Previati 1/C 23900 Lecco (LC) Italy
| | - Sambandam Anandan
- Department of ChemistryNational Institute of Technology Tiruchirappalli India- 620 015
| |
Collapse
|
35
|
Chen S, Chen S, Zhang B, Zhang J. Bifunctional Oxygen Electrocatalysis of N, S-Codoped Porous Carbon with Interspersed Hollow CoO Nanoparticles for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16720-16728. [PMID: 30983318 DOI: 10.1021/acsami.9b02819] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exploring efficient bifunctional oxygen electrocatalysts is beneficial to promote the practical applications for rechargeable Zn-air batteries. Herein, a high-efficiency one-pot method is developed to synthesize porous carbon with N, S doping and embedded hollow cobalt oxide nanoparticles. The coordination of polyethyleneimine molecules with cobalt ions enables the formation of organic-inorganic precursors via the co-precipitation with lignosulfonate because of the electrostatic interaction. Under thermal treatment, the hollow cobalt oxide nanoparticles can be well dispersed among the carbon matrix codoped with N, S. The as-prepared composite catalysts exhibit efficient bifunctional activity for electrochemical reduction and evolution reactions of oxygen, thanks to the N, S codoping nature and the hollow cobalt oxide with abundant oxygen vacancies. The bifunctional catalytic activity renders the assembly of high-performance Zn-air battery in an aqueous electrolyte with a specific capacity of 745 mA h gZn-1 and good cycling stability for over 100 h. More importantly, the all-solid-state Zn-air battery is assembled with a polymer-based electrolyte, also exhibiting good cycling stability and flexibility under various bending status.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Song Chen
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Baohua Zhang
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| |
Collapse
|
36
|
Ma Y, Si C, Yang X, Li J, Wang Z, Shi X, Ye W, Zhou P, Budzianowski WM. Clean synthesis of RGO/Mn 3O 4 nanocomposite with well-dispersed Pd nanoparticles as a high-performance catalyst for hydroquinone oxidation. J Colloid Interface Sci 2019; 552:72-83. [PMID: 31103892 DOI: 10.1016/j.jcis.2019.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Abstract
In this study, a well-dispersed Pd nanoparticle (NP)-supported RGO/Mn3O4 (G/M/Pd) composite was synthesized by a clean synthetic route, where galvanic replacement reaction simply occurred between Mn3O4 and a palladium salt, thereby avoiding the use of harsh reducing and capping agents. The G/M/Pd composite served as a robust catalyst for the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) with H2O2 in an aqueous solution. Oxidation was completed in only 4 min, with a turnover frequency (TOF) of 3613 h-1; this TOF is one hundred times those of previously reported Pd- and Ag-based catalysts. The superior performance was related to the electronic inductive effect between Mn3O4 and Pd NPs, which was verified by density functional theory calculations. Trapping experiments revealed that the oxidation of HQ was considerably related to the ·OH radicals generated from the decomposition of H2O2. In addition, the influencing factors were further investigated, including catalyst and HQ concentrations, solution pH, solvents, and various inorganic and organic interferences. Moreover, the G/M/Pd catalyst exhibits diverse applications for the catalytic oxidation of HQ derivatives with high TOFs.
Collapse
Affiliation(s)
- Yao Ma
- Department of Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Conghui Si
- Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, School of Material Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xing Yang
- Department of Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Jianan Li
- Department of Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Zhezhao Wang
- Department of Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xuezhao Shi
- Department of Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Weichun Ye
- Department of Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| | - Panpan Zhou
- Department of Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| | | |
Collapse
|
37
|
Li Y, Zhu W, Fu X, Zhang Y, Wei Z, Ma Y, Yue T, Sun J, Wang J. Two-Dimensional Zeolitic Imidazolate Framework-L-Derived Iron-Cobalt Oxide Nanoparticle-Composed Nanosheet Array for Water Oxidation. Inorg Chem 2019; 58:6231-6237. [PMID: 31009205 DOI: 10.1021/acs.inorgchem.9b00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rational design of various functional nanomaterials using MOFs as a template provides an effective strategy to synthesize electrocatalysts for water splitting. In this work, we reported that an iron-cobalt oxide with 2D well-aligned nanoflakes assembling on carbon cloth (Fe-Co3O4 NS/CC), fabricated by an anion-exchange reaction followed by an annealing process, could serve as a high-performance oxygen-evolving catalyst. Specifically, the zeolitic imidazolate framework-L-Co nanosheet array (ZIF-L-Co NS/CC) was synthesized through a facile ambient liquid-phase deposition reaction, and then reacted with [Fe(CN)6]3- ions as precursors during the anion-exchange reaction at room temperature. Finally, the Fe-Co3O4 NS/CC was obtained via annealing treatment. On account of the compositional and structural superiority, this 3D monolithic anode exhibited outstanding electrocatalytic performance with a low overpotential of 290 mV to obtain a geometrical current density of 10 mA cm-2 and good durability for water oxidation in base.
Collapse
Affiliation(s)
- Yinge Li
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| | - Wenxin Zhu
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| | - Xue Fu
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| | - Yi Zhang
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| | - Ziyi Wei
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| | - Yiyue Ma
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| | - Tianli Yue
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology , Chinese Academy of Sciences , 23 Xinning Road , Xining 810008 , Qinghai , China
| | - Jianlong Wang
- College of Food Science and Engineering , Northwest A&F University , 22 Xinong Road , Yangling 712100 , Shaanxi , China
| |
Collapse
|
38
|
Akbayrak S. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles. J Colloid Interface Sci 2019; 538:682-688. [DOI: 10.1016/j.jcis.2018.12.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
39
|
Lou X, Li R, Zhu X, Luo L, Chen Y, Lin C, Li H, Zhao XS. New Anode Material for Lithium-Ion Batteries: Aluminum Niobate (AlNb 11O 29). ACS APPLIED MATERIALS & INTERFACES 2019; 11:6089-6096. [PMID: 30714359 DOI: 10.1021/acsami.8b20246] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper describes the syntheses and electrochemical properties of a new niobate compound, aluminum niobate (AlNb11O29), for Li+ storage. AlNb11O29-microsized particles and nanowires were synthesized based on the solid-state reaction and solvothermal methods, respectively. In situ X-ray diffraction results confirmed the intercalating mechanism of Li+ in AlNb11O29 and revealed its high structural stability against cycling. The AlNb11O29 nanowires with a novel bamboo-like morphology afforded a large interfacial area and short charge transport pathways, thus leading to the observed excellent electrochemical properties, including high reversible Li+-storage capacity (266 mA h g-1), safe operating potential (around 1.68 V), and high initial Coulombic efficiency (93.3%) at 0.1 C. At a very high rate (10 C), the AlNb11O29 nanowires still exhibited a capacity as high as 192 mA h g-1, indicating their good rate capability. In addition, at 10 C, 96.3% capacity was retained over 500 cycles, indicating superior cycling stability. A full cell fabricated with AlNb11O29 nanowires as the anode and LiNi0.5Mn1.5O4 microparticles as the cathode delivered a high energy density of 390 W h kg-1 at 0.1 C. This work suggests that the AlNb11O29 nanowires hold a great promise for the development of high-performance lithium-ion batteries for large-scale energy-storage applications.
Collapse
Affiliation(s)
- Xiaoming Lou
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Renjie Li
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Xiangzhen Zhu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Lijie Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Yongjun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Chunfu Lin
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering , Hainan University , Haikou 570228 , China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , China
| | - X S Zhao
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , China
- School of Chemical Engineering , The University of Queensland , St Lucia, Brisbane , Queensland 4072 , Australia
| |
Collapse
|
40
|
Sun B, Chen Y, Tao L, Zhao H, Zhou G, Xia Y, Wang H, Zhao Y. Nanorod Array of SnO 2 Quantum Dot Interspersed Multiphase TiO 2 Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2071-2081. [PMID: 30566321 DOI: 10.1021/acsami.8b18884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ever-growing demand for sustainable and renewable power sources has led to the development of novel materials for photocatalytic water splitting, but enhancing the photocatalytic efficiency remains a core problem. Herein, we report a conceptual effective and experimental confirmed strategy for SnO2 quantum dot (QD) interspersed multiphase (rutile, anatase) TiO2 nanorod arrays (SnO2/RA@TiO2 NRs) to immensely enhance the carrier separation for highly efficient water splitting by merging simultaneously the QD, multiphase, and heterojunction approaches. Under this synergistic effect, a doping ratio of 25% SnO2 QD interspersed into multiphase TiO2 NRs exhibited a superior optical adsorption and excellent photocurrent density (2.45 mA/cm2 at 1.0 V), giving rise to a largely enhanced incident light to current efficiency in the UV region (45-50%). More importantly, this material-based device can act as power supply with a voltage of ∼2.8 V after illumination, which can automatically self-recharge by reacting with oxygen vacancy and water molecule to realize reuse. The current study provides a new paradigm about heightening the carrier separation extent of QD interspersed multiphase heterojunctions, fabricating a new solar-energy-converting material/device, and achieving a highly photocatalytic water splitting/self-charging battery-like application.
Collapse
Affiliation(s)
- Bai Sun
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China , Southwest Jiaotong University , Chengdu 610031 , China
- College of Physics and Energy , Fujian Normal University , Fuzhou 350117 , China
| | - Yuanzheng Chen
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China , Southwest Jiaotong University , Chengdu 610031 , China
| | - Li Tao
- School of Optoelectronic Technology , Chengdu University of Information Technology , Chengdu 610225 , China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing , General Research Institute for Nonferrous Metals , Beijing 100088 , China
| | - Guangdong Zhou
- Institute for Clean Energy & Advanced Materials (ICEAM) , Southwest University , Chongqing 400715 , China
| | - Yudong Xia
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China , Southwest Jiaotong University , Chengdu 610031 , China
| | - Hongyan Wang
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China , Southwest Jiaotong University , Chengdu 610031 , China
| | - Yong Zhao
- School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China , Southwest Jiaotong University , Chengdu 610031 , China
- College of Physics and Energy , Fujian Normal University , Fuzhou 350117 , China
| |
Collapse
|