1
|
Lupi GA, Santiago Valtierra FX, Cabrera G, Spinelli R, Siano ÁS, González V, Osuna A, Oresti GM, Marcipar I. Development of low-cost cage-like particles to formulate veterinary vaccines. Vet Immunol Immunopathol 2022; 251:110460. [PMID: 35901545 DOI: 10.1016/j.vetimm.2022.110460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Low-cost adjuvants are urgently needed for the development of veterinary vaccines able to trigger strong immune responses. In this work, we describe a method to obtain a low-cost cage-like particles (ISCOMATRIX-like) adjuvant useful to formulate veterinary vaccines candidates. The main components to form the particles are lipids and saponins, which were obtained from egg yolk by ethanolic extraction and by dialyzing a non-refined saponins extract, respectively. Lipids were fully characterized by thin layer chromatography (TLC) and gas-chromatography (GC) and enzymatic methods, and saponins were characterized by TLC, HPLC and MALDI-TOF. Cage-like particles were prepared with these components or with commercial inputs. Both particles and the traditional Alum used in veterinary vaccines were compared by immunizing mice with Ovalbumin (OVA) formulated with these adjuvants and assessing IgG1, IgG2a anti OVA antibodies and specific Delayed-type Hypersensitivity (DTH). In the yolk extract, a mixture of phospholipids, cholesterol and minor components of the extract (e.g. lyso-phospholipids) with suitable proportions to generate cage-like particles was obtained. Also, semi-purified saponins with similar features to those of the QuilA® were obtained. Cage-like particles prepared with these components have 40-50 nm and triggers similar levels of Anti-OVA IgG1 and DTH than with commercial inputs but higher specific-IgG2a. Both adjuvants largely increased the levels of IgG1, IgG2a and DTH in relation to the formulation with Alum. The methods described to extract lipids from egg yolk and saponins from non-refined extract allowed us to obtain an inexpensive and highly effective adjuvant.
Collapse
Affiliation(s)
- Giuliana A Lupi
- Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Florencia X Santiago Valtierra
- Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Gabriel Cabrera
- Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Roque Spinelli
- Laboratorio de Péptidos Bioactivos - Departamento de Química Orgánica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Álvaro S Siano
- Laboratorio de Péptidos Bioactivos - Departamento de Química Orgánica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina
| | - Verónica González
- Grupo de Polímeros y Reactores de Polimerización, INTEC (Universidad Nacional del Litoral, CONICET), Santa Fe, Argentina
| | - Antonio Osuna
- Grupo de Investigación en Bioquímica Molecular y Parasitología, Departamento de Parasitología, Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Gerardo M Oresti
- Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Iván Marcipar
- Laboratorio de Tecnología Inmunológica (Facultad de Bioquímica y Cs Biológicas Universidad Nacional del Litoral) - Santa Fe - Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bs.As., Argentina.
| |
Collapse
|
2
|
Ivanchenko P, Escolano-Casado G, Mino L, Dassi L, Fernández-Sánchez JF, Martra G, Gómez-Morales J. Structural and surface studies of luminescent Ca/Eu phosphate nanomaterials: From the bulk to surface features. Colloids Surf B Biointerfaces 2022; 217:112620. [PMID: 35738077 DOI: 10.1016/j.colsurfb.2022.112620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Three luminescent Eu-containing phosphate materials (Ca-doped europium phosphate monohydrate, Eu-doped carbonated-apatite, and europium phosphate monohydrate) were prepared and analyzed on the level of bulk structure and surface properties and compared to the biomimetic non-luminescent counterpart hydroxyapatite. Europium-containing phosphate materials exhibited nanosized dimensions but different luminescence emissions and luminescence lifetimes depending on their crystalline structures (i.e., lanthanide phosphate or apatites) and chemical composition. The introduction of Eu in the crystal lattice leads to a notable decrease in the overall Lewis acidity of the surface cationic sites detected by CO probing. Further, the mixed Eu/Ca-containing materials surfaces were found to be very similar to the reference hydroxyapatite in terms of water adsorption energy, while the pure europium phosphate resulted to have the notably higher energy values of direct interaction of water molecules with the surface cations with no detected propagation of this effect towards water overlayers.
Collapse
Affiliation(s)
- Pavlo Ivanchenko
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino 10125, Italy; MOBI Research Group, Department of Electric Engineering and Energy Technology (ETEC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Guillermo Escolano-Casado
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino 10125, Italy.
| | - Lorenzo Mino
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino 10125, Italy
| | - Luca Dassi
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino 10125, Italy
| | - Jorge F Fernández-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, Granada 18071, Spain
| | - Gianmario Martra
- Department of Chemistry and Interdepartmental Nanostructured Interfaces and Surfaces (NIS) Centre, University of Torino, via P. Giuria 7, Torino 10125, Italy
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. Las Palmeras, nº 4. E-18100 Armilla, Granada, Spain
| |
Collapse
|
3
|
Luminescent Citrate-Functionalized Terbium-Substituted Carbonated Apatite Nanomaterials: Structural Aspects, Sensitized Luminescence, Cytocompatibility, and Cell Uptake Imaging. NANOMATERIALS 2022; 12:nano12081257. [PMID: 35457965 PMCID: PMC9032902 DOI: 10.3390/nano12081257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
This work explores the preparation of luminescent and biomimetic Tb3+-doped citrate-functionalized carbonated apatite nanoparticles. These nanoparticles were synthesized employing a citrate-based thermal decomplexing precipitation method, testing a nominal Tb3+ doping concentration between 0.001 M to 0.020 M, and a maturation time from 4 h to 7 days. This approach allowed to prepare apatite nanoparticles as a single hydroxyapatite phase when the used Tb3+ concentrations were (i) ≤ 0.005 M at all maturation times or (ii) = 0.010 M with 4 h of maturation. At higher Tb3+ concentrations, amorphous TbPO4·nH2O formed at short maturation times, while materials consisting of a mixture of carbonated apatite prisms, TbPO4·H2O (rhabdophane) nanocrystals, and an amorphous phase formed at longer times. The Tb3+ content of the samples reached a maximum of 21.71 wt%. The relative luminescence intensity revealed an almost linear dependence with Tb3+ up to a maximum of 850 units. Neither pH, nor ionic strength, nor temperature significantly affected the luminescence properties. All precipitates were cytocompatible against A375, MCF7, and HeLa carcinogenic cells, and also against healthy fibroblast cells. Moreover, the luminescence properties of these nanoparticles allowed to visualize their intracellular cytoplasmic uptake at 12 h of treatment through flow cytometry and fluorescence confocal microscopy (green fluorescence) when incubated with A375 cells. This demonstrates for the first time the potential of these materials as nanophosphors for living cell imaging compatible with flow cytometry and fluorescence confocal microscopy without the need to introduce an additional fluorescence dye. Overall, our results demonstrated that Tb3+-doped citrate-functionalized apatite nanoparticles are excellent candidates for bioimaging applications.
Collapse
|
4
|
Biomimetic Citrate-Coated Luminescent Apatite Nanoplatforms for Diclofenac Delivery in Inflammatory Environments. NANOMATERIALS 2022; 12:nano12030562. [PMID: 35159907 PMCID: PMC8838995 DOI: 10.3390/nano12030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Luminescent nanoparticles are innovative tools for medicine, allowing the imaging of cells and tissues, and, at the same time, carrying and releasing different types of molecules. We explored and compared the loading/release ability of diclofenac (COX-2 antagonist), in both undoped- and luminescent Terbium3+ (Tb3+)-doped citrate-coated carbonated apatite nanoparticles at different temperatures (25, 37, 40 °C) and pHs (7.4, 5.2). The cytocompatibility was evaluated on two osteosarcoma cell lines and primary human osteoblasts. Biological effects of diclofenac-loaded-nanoparticles were monitored in an in vitro osteoblast’s cytokine–induced inflammation model by evaluating COX-2 mRNA expression and production of PGE2. Adsorption isotherms fitted the multilayer Langmuir-Freundlich model. The maximum adsorbed amounts at 37 °C were higher than at 25 °C, and particularly when using the Tb3+ -doped particles. Diclofenac-release efficiencies were higher at pH 5.2, a condition simulating a local inflammation. The luminescence properties of diclofenac-loaded Tb3+ -doped particles were affected by pH, being the relative luminescence intensity higher at pH 5.2 and the luminescence lifetime higher at pH 7.4, but not influenced either by the temperature or by the diclofenac-loaded amount. Both undoped and Tb3+-doped nanoparticles were cytocompatible. In addition, diclofenac release increased COX-2 mRNA expression and decreased PGE2 production in an in vitro inflammation model. These findings evidence the potential of these nanoparticles for osteo-localized delivery of anti-inflammatory drugs and the possibility to localize the inflammation, characterized by a decrease in pH, by changes in luminescence.
Collapse
|
5
|
Gao G, Li Y, Yu W, Wang G, Zhu P, Qin W, Wang D. Enhanced luminescence through interface energy transfer in hierarchical heterogeneous nanocomposites and application in white LEDs. J Colloid Interface Sci 2021; 583:204-213. [PMID: 33007584 DOI: 10.1016/j.jcis.2020.09.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Highly efficient light-emitting materials are essential for achieving high-performance devices. Here, a novel composite system, as well as enhanced luminescence processes, was designed, where NaLn(MoO4)2 ultra-small nucleus can be effectively isolated by In(OH)3 to form NaLn(MoO4)2@In(OH)3 composite nanoclusters due to the different nucleation rate between NaLn(MoO4)2 and In(OH)3, and then these small composite clusters gradually self-assemble into hierarchical structures. As we expected, the enhanced luminescence was achieved from hierarchical NaLn(MoO4)2 nanostructures with adjusting the distance among NaLn(MoO4)2 ultra-small nucleus by inserting In(OH)3. A series of spectroscopy results show that the In(OH)3 not only acts as an energy transfer bridge from CTB Eu3+ → O2- (or MoO42- absorption) to Eu3+, but also can effectively alleviate the concentration quenching of Ln3+ and change the J-O parameters. The Raman peak at 134 cm-1 is helpful to populate the 5D0 level of Eu3+ or the excited states of Er3+, resulting in stronger up/down-conversion emissions. The use of NaLn(MoO4)2@In(OH)3 in white light-emitting diodes (LEDs) has been demonstrated. The combination of red emission from NaLn(MoO4)2@In(OH)3 with blue, green, and yellow emission from halide perovskites could achieve white light with excellent vision performance (an LER of 376 lm/W) and superior color quality (CRI > 92). The findings of this experiment provide a new idea for the design of composite interface materials.
Collapse
Affiliation(s)
- Guoyang Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yini Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Wenjing Yu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Guofeng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Peifen Zhu
- Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104, USA.
| | - Weiping Qin
- College of Electronic Science and Engineering, Jilin University, 120012, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Gómez-Morales J, Fernández-Penas R, Romero-Castillo I, Verdugo-Escamilla C, Choquesillo-Lazarte D, D’Urso A, Prat M, Fernández-Sánchez JF. Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:322. [PMID: 33513811 PMCID: PMC7910970 DOI: 10.3390/nano11020322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
Luminescent lanthanide-containing biocompatible nanosystems represent promising candidates as nanoplatforms for bioimaging applications. Herein, citrate-functionalized calcium-doped terbium phosphate hydrate nanophosphors of the rhabdophane type were prepared at different synthesis times and different Ca2+/Tb3+ ratios by a bioinspired crystallization method consisting of thermal decomplexing of Ca2+/Tb3+/citrate/phosphate/carbonate solutions. Nanoparticles were characterized by XRD, TEM, SEM, HR-TEM, FTIR, Raman, Thermogravimetry, inductively coupled plasma spectroscopy, thermoanalysis, dynamic light scattering, electrophoretic mobility, and fluorescence spectroscopy. They displayed ill-defined isometric morphologies with sizes ≤50 nm, hydration number n ~ 0.9, tailored Ca2+ content (0.42-8.11 wt%), and long luminescent lifetimes (800-2600 µs). Their relative luminescence intensities in solid state are neither affected by Ca2+, citrate content, nor by maturation time for Ca2+ doping concentration in solution below 0.07 M Ca2+. Only at this doping concentration does the maturation time strongly affect this property, decreasing it. In aqueous suspensions, neither pH nor ionic strength nor temperature affect their luminescence properties. All the nanoparticles displayed high cytocompatibility on two human carcinoma cell lines and cell viability correlated positively with the amount of doping Ca2+. Thus, these nanocrystals represent promising new luminescent nanoprobes for potential biomedical applications and, if coupled with targeting and therapeutic moieties, they could be effective tools for theranostics.
Collapse
Affiliation(s)
- Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Raquel Fernández-Penas
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Ismael Romero-Castillo
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Cristóbal Verdugo-Escamilla
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Annarita D’Urso
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy;
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 28100 Novara, Italy
| | | |
Collapse
|
7
|
Ortiz-Gómez I, Ramírez-Rodríguez GB, Capitán-Vallvey LF, Salinas-Castillo A, Delgado-López JM. Highly stable luminescent europium-doped calcium phosphate nanoparticles for creatinine quantification. Colloids Surf B Biointerfaces 2020; 196:111337. [PMID: 32949922 DOI: 10.1016/j.colsurfb.2020.111337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
The determination of creatinine levels is essential for the detection of renal and muscular dysfunction. Luminescent nanoparticles are emerging as fast, cheap and highly selective sensors for the detection and quantification of creatinine. Nevertheless, current nanosensors only have a short shelf life due to their poor chemical and colloidal stability, which limits their clinical functionality. In this work, we have developed a highly stable, selective and sensitive nanosensor based on europium-doped, amorphous calcium phosphate nanoparticles (Eu-ACP) for the determination of creatinine by luminescence spectroscopy. The colloidal stability of Eu-ACP nanoparticles in aqueous solutions was optimised to ensure a constant signal after up to 4 months in storage. The luminescence intensity of Eu-ACP decreased linearly with the creatinine concentration over the range of 1-120 μM (R2 = 0.995). This concentration-response relationship was used to determine creatinine levels in real urine samples resulting in good recovery percentages. Significantly, selectivity assays indicated that none of the potential interfering species provoked discernible changes in the luminescence intensity.
Collapse
Affiliation(s)
- Inmaculada Ortiz-Gómez
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Gloria B Ramírez-Rodríguez
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain.
| | - Luis F Capitán-Vallvey
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain
| | - Alfonso Salinas-Castillo
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, University of Granada, Faculty of Science, Av. Fuente Nueva, s/n, 18071 Granada, Spain; Unit of Excellence in Chemistry applied to Biomedicine and the Environment of the University of Granada, Spain.
| |
Collapse
|
8
|
Jabalera Y, Oltolina F, Prat M, Jimenez-Lopez C, Fernández-Sánchez JF, Choquesillo-Lazarte D, Gómez-Morales J. Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E199. [PMID: 31979272 PMCID: PMC7074876 DOI: 10.3390/nano10020199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/04/2022]
Abstract
In the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir-Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.29 ± 0.02 mg Doxo mg Eu:cit-cAp-1 (Qmax). The affinity constant KFL for this binding is 44 ± 2 mL mg-1, and the cooperativity coefficient r is 6 ± 1. The nanoparticle suspensions presented charge reversion from negative to positive after loading with Doxo as revealed by the ζ-potential versus pH characterization. The release of drug from the loaded nanoparticles was found to be strongly pH-dependent, being around 5 wt % at physiological pH 7.4 and 20 wt % at pH 5, in experiments lasting 24 h. Luminescence spectroscopic measurements of Doxo-loaded nanoparticles revealed the increase of luminescence with a decrease in the amount of adsorbed Doxo, due to the so-called inner filter effect. The nanoparticles free of Doxo were cytocompatible when interacted with two human cell lines derived respectively from a gastric carcinoma (GTL-16), and a hepatocarcinoma (Huh7), while Doxo-loaded nanoparticles displayed significant toxicity in a dose-dependent relationship. Therefore, the new nanoassemblies might have a dual function, as nanoprobes in bioimaging by detecting the fate of the nanoparticles in biological environments, and for monitoring the delivery of the drug in such environments, by measuring the rise of the luminescence provided by the desorption of Doxo.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Francesca Oltolina
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez-Lopez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Jorge F. Fernández-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain;
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| |
Collapse
|
9
|
Rivas M, Pelechà M, Franco L, Turon P, Alemán C, Del Valle LJ, Puiggalí J. Incorporation of Chloramphenicol Loaded Hydroxyapatite Nanoparticles into Polylactide. Int J Mol Sci 2019; 20:ijms20205056. [PMID: 31614695 PMCID: PMC6834152 DOI: 10.3390/ijms20205056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
Chloramphenicol (CAM) has been encapsulated into hydroxyapatite nanoparticles displaying different morphologies and crystallinities. The process was based on typical precipitation of solutions containing phosphate and calcium ions and the addition of CAM once the hydroxyapatite nuclei were formed. This procedure favored a disposition of the drug into the bulk parts of the nanoparticles and led to a fast release in aqueous media. Clear antibacterial activity was derived, being slightly higher for the amorphous samples due to their higher encapsulation efficiency. Polylactide (PLA) microfibers incorporating CAM encapsulated in hydroxyapatite nanoparticles were prepared by the electrospinning technique and under optimized conditions. Drug release experiments demonstrated that only a small percentage of the loaded CAM could be delivered to an aqueous PBS medium. This amount was enough to render an immediate bacteriostatic effect without causing a cytotoxic effect on osteoblast-like, fibroblasts, and epithelial cells. Therefore, the prepared scaffolds were able to retain CAM-loaded nanoparticles, being a reservoir that should allow a prolonged release depending on the polymer degradation rate. The studied system may have promising applications for the treatment of cancer since CAM has been proposed as a new antitumor drug.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Ed I-2, 08019 Barcelona, Spain.
| | - Marc Pelechà
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Ed I-2, 08019 Barcelona, Spain.
| | - Lourdes Franco
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Ed I-2, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Pau Turon
- B.Braun Surgical, S.A., Carretera de Terrassa 121, 08191 Rubí (Barcelona), Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Ed I-2, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luis J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Ed I-2, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, Ed I-2, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|