1
|
Delgado-Buscalioni R. Coverage Effects in Quartz Crystal Microbalance Measurements with Suspended and Adsorbed Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:580-593. [PMID: 38127725 PMCID: PMC10786041 DOI: 10.1021/acs.langmuir.3c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Quartz crystal microbalance (QCM) biosensors often deal with nanoparticles suspended in the solvent at tens of nanometers above the resonator while being linked to some molecular receptor (DNA, antibody, etc.). This work presents a numerical analysis based on the immersed boundary method for the flow and QCM impedance created by an ensemble of spherical particles of radius R at varying surface coverage Θ and particle-surface gap distance Δ. The trends for the frequency Δf and dissipation ΔD shifts against Θ and Δ are shown to be determined by modifications in the structure of the perturbative flow created by the analytes. Simulations are in good agreement with a relatively large experimental database collected from the literature. Qualitative differences between the adsorbed (Δ ≈ 0) and suspended states (Δ > 0) are highlighted. In the case of adsorbed particles, deviations from the linear scaling Δf ∝ Θ are observed above Θ > 0.05 and largely depend on the specific analyte-substrate combination. Moreover, in general, ΔD(Θ) is not monotonous and usually presents a maximum around Θ ∼ 0.2. In the case of suspended analytes, the agreement with the numerical results is quantitative, indicating that the predicted scalings are universal and determined by hydrodynamics. Up to high coverage, the suspended particles present Δf ∼ Θ and ΔD ∼ Θβ, where β ≈ 0.85 is not largely dependent on R. The present findings should help forecast molecular configurations from QCM signals and have implications on QCM analyses, e.g., in the case of suspended ligands (Δf ∝ Θ), it is safe to use Δf to build Langmuir isotherms and estimate equilibrium constants. Open questions on the transition from the suspended-to-adsorbed state are discussed.
Collapse
Affiliation(s)
- Rafael Delgado-Buscalioni
- Departamento de Física de la
Materia Condensada, Universidad Autonoma
de Madrid, and Institute for Condensed Matter Physics, IFIMAC. Campus
de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
2
|
Zhang Y, Wang Y, Li X, Nie D, Liu C, Gan Y. Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. J Control Release 2022; 352:813-832. [PMID: 36368493 DOI: 10.1016/j.jconrel.2022.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
Ligand-modified nanocarriers (LMNCs) specific to their targets have attracted increasing interest for enhanced oral drug delivery in recent decades. Although the design of LMNCs for enhanced endocytosis and improved exposure of the loaded drugs through the oral route has received abundant attention, it remains unclear how the design influences their transcellular process, especially the key factors affecting their functions. This review discusses the extracellular and cellular barriers to orally administered LMNCs in the gastrointestinal (GI) tract and new discoveries regarding the GI protein corona and the sequential transport barriers that impede the preplanned movements of LMNCs after oral administration. Furthermore, innovative progress in considering key factors (including target selection, ligand properties, and other important factors) in the rational design of LMNCs for oral drug delivery is presented. In particular, some factors that endow LMNCs with efficient transcytosis rather than only endocytosis are highlighted. Finally, the prospects of orally administered LMNCs in disease therapy for the enhanced oral/local bioavailability of active pharmaceutical ingredients, as well as emerging delivery routes, such as lymphatic drug delivery and systemic location-specific drug release based on oral transcellular LMNCs, are discussed.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
3
|
Schofield MM, Delgado-Buscalioni R. Quantitative description of the response of finite size adsorbates on a quartz crystal microbalance in liquids using analytical hydrodynamics. SOFT MATTER 2021; 17:8160-8174. [PMID: 34525162 DOI: 10.1039/d1sm00492a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite being a fundamental tool in soft matter research and biosensing, quartz crystal microbalance (QCM) analyses of discrete macromolecules in liquids so far lack a firm theoretical basis. Quite often, acoustic signals of discrete particles are qualitatively interpreted using ad hoc frameworks based on effective electrical circuits, effective springs and trapped-solvent models with many fitting parameters. Nevertheless, due to its extreme sensitivity, the QCM technique pledges to become an accurate predictive tool. Using unsteady low Reynolds hydrodynamics we derive analytical expressions for the acoustic impedance of adsorbed discrete spheres. The present approach is successfully validated against 3D simulations and a plethora of experimental results covering more than a decade of research on proteins, viruses, liposomes, and massive nanoparticles, with sizes ranging from a few to hundreds of nanometers. The agreement without fitting parameters indicates that the acoustic response is dominated by the hydrodynamic propagation of the particle surface stress over the resonator. Understanding this leading contribution is a prerequisite for deciphering the secondary contributions arising from the relevant specific molecular and physico-chemical forces.
Collapse
Affiliation(s)
- Marc Meléndez Schofield
- Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, and Institute for Condensed Matter Physics, IFIMAC, Campus de Cantoblanco, Madrid 28049, Spain.
| | - Rafael Delgado-Buscalioni
- Departmento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, and Institute for Condensed Matter Physics, IFIMAC, Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
4
|
Morga M, Adamczyk Z, Kosior D, Kujda-Kruk M. Kinetics of Poly-l-lysine Adsorption on Mica and Stability of Formed Monolayers: Theoretical and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12042-12052. [PMID: 31433647 DOI: 10.1021/acs.langmuir.9b02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various physicochemical parameters of poly-l-lysine (PLL) solutions comprising the diffusion coefficient, the electrophoretic mobility, the density, and the intrinsic viscosity were determined for the pH range 3.0-9.2. This allowed us to calculate derivative parameters characterizing the PLL molecule such as: zeta potential, the number of electrokinetic charges, ionization degree, contour length, and cross section area. These data were exploited in theoretical calculations of PLL adsorption kinetics on solid substrates under diffusion transport. A hybrid approach was used comprising a blocking function derived from the random sequential adsorption (RSA) model. In experiments, the PLL adsorption on mica was studied using the streaming potential measurements and interpreted in terms of a general electrokinetic model. This confirmed a side-on adsorption mechanism of the macroion molecules at the examined pH range. Additionally, using this method, the stability of PLL monolayers was determined performing in situ desorption kinetic experiments. In this way, the equilibrium adsorption constant and the energy minimum depth were determined. It was confirmed that the monolayer stability decreases with pH following the decrease in the number of electrokinetic charges per molecule. This confirmed the electrostatic interaction driven adsorption mechanism of PLL. It is also predicted that at pH 5.7-7.4 the monolayers were stable under diffusion-controlled desorption over the time exceeding 100 h. In addition to their significance for basic science, the results obtained in this work can be exploited for developing procedures for preparing stable PLL monolayers of well controlled coverage and electrokinetic properties.
Collapse
Affiliation(s)
| | | | - Dominik Kosior
- Department of Inorganic and Analytical Chemistry , University of Geneva , Sciences II, 30 Quai Ernest-Ansermet , 1205 Geneva , Switzerland
| | | |
Collapse
|