1
|
Lee MK, Kim D, Kim MO. Experimental Study on the Chlorine-Induced Corrosion and Blister Formation of Steel Pipes Coated with Modified Polyethylene Powder. Polymers (Basel) 2024; 16:2415. [PMID: 39274048 PMCID: PMC11397151 DOI: 10.3390/polym16172415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
In this study, chlorine-induced corrosion and blister formation on steel pipes (SPs) coated with modified polyethylene powder (MPP) were evaluated through various tests, including chlorine exposure, wet immersion, and temperature gradient experiments. The results confirmed that the extent of corrosion and iron leaching varied with the coating type as expected. In batch leaching tests, no corrosion was observed on modified polyethylene-coated steel pipes (MPCSPs) within a chlorine concentration range of 0 mg/L to 10 mg/L; similarly, there were no significant changes in specimen weight or iron levels. In contrast, the control group with uncoated SPs exhibited significant iron leaching and corrosion, a trend consistent in sequential leaching experiments. SEM analysis after a month of chlorine exposure revealed no significant corrosion on MPCSPs, and SEM-EDX confirmed no major changes in the carbon bond structure, indicating resistance to high chlorine concentrations. Comparative analysis of wet immersion and temperature gradient tests between MPCSP and conventional epoxy-coated SP (ECSP) specimens revealed that MPCSPs did not develop blisters even after 100 days of immersion, whereas ECSPs began showing blisters as early as 50 days. In temperature gradient tests, MPCSPs showed no blisters after 100 days, while ECSPs exhibited severe internal coating layer blisters.
Collapse
Affiliation(s)
- Myung Kue Lee
- Department of Civil and Environmental Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju 55069, Jeollabuk-do, Republic of Korea
| | - Dongchan Kim
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Min Ook Kim
- Department of Civil Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
2
|
Tian S, Shi X, Wang S, He Y, Zheng B, Deng X, Zhou Z, Wu W, Xin K, Tang L. Recyclable Fe 3O 4@UiO-66-PDA core-shell nanomaterials for extensive metal ion adsorption: Batch experiments and theoretical analysis. J Colloid Interface Sci 2024; 665:465-476. [PMID: 38537592 DOI: 10.1016/j.jcis.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
With the ever-increasing challenge of heavy metal pollution, the imperative for developing highly efficient adsorbents has become apparent to remove metal ions from wastewater completely. In this study, we introduce a novel magnetic core-shell adsorbent, Fe3O4@UiO-66-PDA. It features a polydopamine (PDA) modified zirconium-based metal-organic framework (UiO-66) synthesized through a simple solvothermal method. The adsorbent boasts a unique core-shell architecture with a high specific surface area, abundant micropores, and remarkable thermal stability. The adsorption capabilities of six metal ions (Fe3+, Mn2+, Pb2+, Cu2+, Hg2+, and Cd2+) were systematically investigated, guided by the theory of hard and soft acids and bases. Among these, three representative metal ions (Fe3+, Pb2+, and Hg2+) were scrutinized in detail. The activated Fe3O4@UiO-66-PDA exhibited exceptional adsorption capacities for these metal ions, achieving impressive values of 97.99 mg/g, 121.42 mg/g, and 130.72 mg/g, respectively, at pH 5.0. Moreover, the adsorbent demonstrated efficient recovery from aqueous solution using an external magnet, maintaining robust adsorption efficiency (>80%) and stability even after six cycles. To delve deeper into the optimized adsorption of Hg2+, density functional theory (DFT) analysis was employed, revealing an adsorption energy of -2.61 eV for Hg2+. This notable adsorption capacity was primarily attributed to electron interactions and coordination effects. This study offers valuable insights into metal ion adsorption facilitated, by magnetic metal-organic framework (MOF) materials.
Collapse
Affiliation(s)
- Shuangqin Tian
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xin Shi
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China; Honghe Prefecture Nationality Senior High School, Honghe 661200, Yunnan Province, PR China.
| | - Shujie Wang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Yi He
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Bifang Zheng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xianhong Deng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Ziqin Zhou
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Wenbin Wu
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Kai Xin
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Lihong Tang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| |
Collapse
|
3
|
Huang H, Zhang W, Han X, Han Z, Song D, Li W, Li Z, Wang Y, Xu W. Effect of polydopamine deposition on wool fibers on the construction of melanin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongbo Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
| | - Wen Zhang
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
| | - Xiaoyu Han
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
| | - Zongbao Han
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
| | - Wenbin Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
| | - Zhujun Li
- College of Textiles Guangdong Polytechnic Guangzhou China
| | - Yunli Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
- Hubei Key Laboratory of Biomass Fibers and Eco‐Dyeing & Finishing Wuhan Textile University Wuhan China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
| |
Collapse
|
4
|
Wang C, Park MJ, Yu H, Matsuyama H, Drioli E, Shon HK. Recent advances of nanocomposite membranes using layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Argenziano R, Alfieri ML, Arntz Y, Castaldo R, Liberti D, Maria Monti D, Gentile G, Panzella L, Crescenzi O, Ball V, Napolitano A, d'Ischia M. Non-covalent small molecule partnership for redox-active films: Beyond polydopamine technology. J Colloid Interface Sci 2022; 624:400-410. [PMID: 35671617 DOI: 10.1016/j.jcis.2022.05.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS The possibility to use hexamethylenediamine (HMDA) to impart film forming ability to natural polymers including eumelanins and plant polyphenols endowed with biological activity and functional properties has been recently explored with the aim to broaden the potential of polydopamine (PDA)-based films overcoming their inherent limitations. 5,6-dihydroxyindole-2-carboxylic acid, its methyl ester (MeDHICA) and eumelanins thereof were shown to exhibit potent reducing activity. EXPERIMENTS MeDHICA and HMDA were reacted in aqueous buffer, pH 9.0 in the presence of different substrates to assess the film forming ability. The effect of different reaction parameters (pH, diamine chain length) on film formation was investigated. Voltammetric and AFM /SEM methods were applied for analysis of the film redox activity and morphology. HPLC, MALDI-MS and 1HNMR were used for chemical characterization. The film reducing activity was evaluated in comparison with PDA by chemical assays and using UV stressed human immortalized keratinocytes (HaCat) cells model. FINDINGS Regular and homogeneous yellowish films were obtained with moderately hydrophobic properties. Film deposition was optimal at pH 9, and specifically induced by HMDA. The film consisted of HMDA and monomeric MeDHICA accompanied by dimers/small oligomers, but no detectable MeDHICA/HMDA covalent conjugation products. Spontaneous assembly of self-organized networks held together mainly by electrostatic interactions of MeDHICA in the anion form and HMDA as the dication is proposed as film deposition mechanism. The film displayed potent reducing properties and exerted significant protective effects from oxidative stress on HaCaT.
Collapse
Affiliation(s)
- Rita Argenziano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Youri Arntz
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, Strasbourg 67000, France
| | - Rachele Castaldo
- Institute for Polymers, Composites and Biomaterials - National Research Council of Italy, Via Campi Flegrei, 34, Pozzuoli, NA 80078, Italy
| | - Davide Liberti
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials - National Research Council of Italy, Via Campi Flegrei, 34, Pozzuoli, NA 80078, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| | - Vincent Ball
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, Strasbourg 67000, France
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 21, I-80126 Naples, Italy
| |
Collapse
|
6
|
Chi M, Li N, Cui J, Karlin S, Rohr N, Sharma N, Thieringer FM. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:989729. [PMID: 36159699 PMCID: PMC9493000 DOI: 10.3389/fbioe.2022.989729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Polylactic acid (PLA) has been widely used as filaments for material extrusion additive manufacturing (AM) to develop patient-specific scaffolds in bone tissue engineering. Hydroxyapatite (HA), a major component of natural bone, has been extensively recognized as an osteoconductive biomolecule. Here, inspired by the mussel-adhesive phenomenon, in this study, polydopamine (PDA) coating was applied to the surface of 3D printed PLA scaffolds (PLA@PDA), acting as a versatile adhesive platform for immobilizing HA nanoparticles (nHA). Comprehensive analyses were performed to understand the physicochemical properties of the 3D-printed PLA scaffold functionalized with nHA and PDA for their potent clinical application as a bone regenerative substitute. Scanning electron microscopy (SEM) and element dispersive X-ray (EDX) confirmed a successful loading of nHA particles on the surface of PLA@PDA after 3 and 7 days of coating (PLA@PDA-HA3 and PLA@PDA-HA7), while the surface micromorphology and porosity remain unchanged after surface modification. The thermogravimetric analysis (TGA) showed that 7.7 % and 12.3% mass ratio of nHA were loaded on the PLA scaffold surface, respectively. The wettability test indicated that the hydrophilicity of nHA-coated scaffolds was greatly enhanced, while the mechanical properties remained uncompromised. The 3D laser scanning confocal microscope (3DLS) images revealed that the surface roughness was significantly increased, reaching Sa (arithmetic mean height) of 0.402 μm in PLA@PDA-HA7. Twenty-eight days of in-vitro degradation results showed that the introduction of nHA to the PLA surface enhances its degradation properties, as evidenced by the SEM images and weight loss test. Furthermore, a sustainable release of Ca2+ from PLA@PDA-HA3 and PLA@PDA-HA7 was recorded, during the degradation process. In contrast, the released hydroxyl group of nHA tends to neutralize the local acidic environments, which was more conducive to osteoblastic differentiation and extracellular mineralization. Taken together, this facile surface modification provides 3D printed PLA scaffolds with effective bone regenerative properties by depositing Ca2+ contents, improving surface hydrophilicity, and enhancing the in-vitro degradation rate.
Collapse
Affiliation(s)
- Minghan Chi
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Na Li
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, United States
| | - Sabrina Karlin
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Nadja Rohr
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Neha Sharma
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Qian X, Ostwal M, Asatekin A, Geise GM, Smith ZP, Phillip WA, Lively RP, McCutcheon JR. A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Wang C, Park MJ, Seo DH, Phuntsho S, Gonzales RR, Matsuyama H, Drioli E, Shon HK. Inkjet printed polyelectrolyte multilayer membrane using a polyketone support for organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Electroless Ni–Sn–P plating to fabricate nickel alloy coated polypropylene membrane with enhanced performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119820] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zhang P, Liu W, Rajabzadeh S, Jia Y, Shen Q, Fang C, Kato N, Matsuyama H. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Zhan Y, Zhang G, Feng Q, Yang W, Hu J, Wen X, Liu Y, Zhang S, Sun A. Fabrication of durable super-hydrophilic/underwater super-oleophobic poly(arylene ether nitrile) composite membrane via biomimetic co-deposition for multi-component oily wastewater separation in harsh environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Application of Capillary Polypropylene Membranes for Microfiltration of Oily Wastewaters: Experiments and Modeling. FIBERS 2021. [DOI: 10.3390/fib9060035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oily wastewaters are considered as one of the most dangerous types of environmental pollution. In the present study, the microfiltration (MF) process of model emulsions and real oily wastewaters was investigated. For this purpose, capillary polypropylene (PP) membranes were used. The experiments were conducted under transmembrane pressure (TMP) and feed flow rate (VF) equal to 0.05 MPa and 0.5 m/s, respectively. It was found that the used membranes ensured a high-quality permeate with turbidity equal to about 0.4 NTU and oil concentration of 7–15 mg/L. As expected, a significant decrease in the MF process performance was noted. However, it is shown that the initial decline of permeate flux could be slightly increased by increasing the feed temperature from 25 °C to 50 °C. Furthermore, Hermia’s models were used to interpret the fouling phenomenon occurring in studied experiments. It was determined that cake formation was the dominant fouling mechanism during filtration of both synthetic and real feeds. Through detailed studies, we present different efficient methods of membrane cleaning. Results, so far, are very encouraging and may have an important impact on increasing the use of polypropylene MF membranes in oily wastewater treatments.
Collapse
|
14
|
Ma Y, Wisuthiphaet N, Bolt H, Nitin N, Zhao Q, Wang D, Pourdeyhimi B, Grondin P, Sun G. N-Halamine Polypropylene Nonwoven Fabrics with Rechargeable Antibacterial and Antiviral Functions for Medical Applications. ACS Biomater Sci Eng 2021; 7:2329-2336. [DOI: 10.1021/acsbiomaterials.1c00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yue Ma
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
| | - Nicharee Wisuthiphaet
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Hunter Bolt
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
- Department of Food Science and Technology, University of California, Davis, California 95616, United States
| | - Qinghua Zhao
- Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Dong Wang
- Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Behnam Pourdeyhimi
- The Nonwoven Institute, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Pierre Grondin
- The Nonwoven Institute, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, One Shields Ave, Davis, California 95616, United States
| |
Collapse
|
15
|
Li R, Li J, Rao L, Lin H, Shen L, Xu Y, Chen J, Liao BQ. Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118790] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Bahremand F, Shahrabi T, Ramezanzadeh B. Development of a nanostructured film based on samarium (III)/polydopamine on the steel surface with superior anti-corrosion and water-repellency properties. J Colloid Interface Sci 2021; 582:342-352. [PMID: 32827959 DOI: 10.1016/j.jcis.2020.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS The application of various hydrophobic/superhydrophobic coatings on the surface of metals has become the hot topic of the recent studies. The corrosion protection effectiveness and environmental issues are two important factors that should be taken into consideration when developing advanced surface coatings. Recently, the rare-earth elements (i.e., samarium) and biopolymers (i.e., polydopamine) have attracted much attention in the metals' corrosion control field. EXPERIMENTS The Sm(NO3)3 containing solution was sprayed to the steel (St-12) sheets. Then, the Sm-modified plates were post-modified by polydopamine biopolymers that were synthesized by the self-polymerization (using tris (hydroxymethyl) aminomethane as a buffer), and oxidant-induced (using CuSO4 as an oxidant) approaches. The structural analysis was carried out by different techniques such as contact angle (CA) test. Moreover, the electrochemical impedance spectroscopy (EIS) and polarization tests were performed to investigate the anti-corrosion performance of various samples. FINDINGS The CA test results revealed that by applying the nanostructured Sm-based film, the surface of the metal becomes near superhydrophobic (CA > 140°). EIS results evidenced the significant impact of the post-treatment of the Sm-treated samples by polydopamine (PDA) nanoparticles (NPs) on its corrosion protection ability enhancement. Also, the polarization test results confirmed that all treatments could retard the corrosion of steel via a mixed-type inhibition mechanism.
Collapse
Affiliation(s)
- Farshad Bahremand
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
| | - Taghi Shahrabi
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran.
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran.
| |
Collapse
|
17
|
Wang C, Park MJ, Seo DH, Shon HK. Inkjet printing of graphene oxide and dopamine on nanofiltration membranes for improved anti-fouling properties and chlorine resistance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Controlling the polarity and viscosity of small molecule ink to suppress the contact line receding and coffee ring effect during inkjet printing. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Impact of MWCO and Dopamine/Polyethyleneimine Concentrations on Surface Properties and Filtration Performance of Modified Membranes. MEMBRANES 2020; 10:membranes10090239. [PMID: 32961881 PMCID: PMC7559832 DOI: 10.3390/membranes10090239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023]
Abstract
The mussel-inspired method has been investigated to modify commercial ultrafiltration membranes to induce antifouling characteristics. Such features are essential to improve the feasibility of using membrane processes in protein recovery from waste streams, wastewater treatment, and reuse. However, some issues still need to be clarified, such as the influence of membrane pore size and the polymer concentration used in modifying the solution. The aim of the present work is to study a one-step deposition of dopamine (DA) and polyethyleneimine (PEI) on ultrafiltration membrane surfaces. The effects of different membrane molecular weight cut-offs (MWCO, 20, 30, and 50 kDa) and DA/PEI concentrations on membrane performance were assessed by surface characterization (FTIR, AFM, zeta potential, contact angle, protein adsorption) and permeation of protein solution. Results indicate that larger MWCO membranes (50 kDa) are most benefited by modification using DA and PEI. Moreover, PEI is primarily responsible for improving membrane performance in protein solution filtration. The membrane modified with 0.5:4.0 mg mL-1 (DA: PEI) presented a better performance in protein solution filtration, with only 15% of permeate flux drop after 2 h of filtration. The modified membrane can thus be potentially applied to the recovery of proteins from waste streams.
Collapse
|
20
|
Łojszczyk I, Kuźmińska A, Butruk-Raszeja BA, Ciach T. Fenton-type reaction grafting of polyvinylpyrrolidone onto polypropylene membrane for improving hemo- and biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110960. [DOI: 10.1016/j.msec.2020.110960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/31/2022]
|
21
|
Li R, Fan H, Shen L, Rao L, Tang J, Hu S, Lin H. Inkjet printing assisted fabrication of polyphenol-based coating membranes for oil/water separation. CHEMOSPHERE 2020; 250:126236. [PMID: 32088617 DOI: 10.1016/j.chemosphere.2020.126236] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/29/2023]
Abstract
While polyphenol-based coating has been regarded as a promising alternative to functionalize membrane surface, it usually suffers from problems of low-efficient procedure and low utilization rate of the polyphenolic compounds, hindering its large-scale implementations. To solve these problems, this study provided a first report on inkjet printing of polyphenols (catechol (CA) or tannic acid (TA)) and sodium periodate (SP) on a polyvinylidene fluoride (PVDF) membrane to improve membrane performance. A series of analyses showed the efficient formation of homogenous films on the PVDF membrane surface and the improvement of hydrophilicity by the inkjet printing technique. The PVDF membranes decorated with the optimized polyphenolic coating exhibited a promising oil/water separation efficiency (higher than 99%) with a high average water permeation flux of 5.2 times higher than that of the pristine membrane. Meanwhile, the modified membranes illustrated a good stability under acidic conditions (pH = 2-7). The novel method proposed in this study is facile, cost-saving and environment-friendly. The advantages of the proposed method and the modified membranes demonstrated the great significance of the proposed method in practical applications.
Collapse
Affiliation(s)
- Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hangxu Fan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Linhua Rao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jiayi Tang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Sufei Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
22
|
Rao L, Tang J, Hu S, Shen L, Xu Y, Li R, Lin H. Inkjet printing assisted electroless Ni plating to fabricate nickel coated polypropylene membrane with improved performance. J Colloid Interface Sci 2020; 565:546-554. [DOI: 10.1016/j.jcis.2020.01.069] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
|
23
|
Guo X, Li C, Fan S, Gao Z, Tong L, Gao H, Zhou Q, Shao H, Liao Y, Li Q, Hu W. Engineering polydopamine-glued sandwich-like nanocomposites with antifouling and antibacterial properties for the development of advanced mixed matrix membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|