1
|
Liu C, Chang Q, Fan X, Meng N, Lu J, Shu Q, Xie Y, Celia C, Wei G, Deng X. Rational construction of CQDs-based targeted multifunctional nanoplatform for synergistic chemo-photothermal tumor therapy. J Colloid Interface Sci 2025; 677:79-90. [PMID: 39137565 DOI: 10.1016/j.jcis.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Photothermal therapy combined with chemotherapy has shown great promise in the treatment of cancer. In this synergistic system, a safe, stable, and efficient photothermal agent is desired. Herein, an effective photothermal agent, carbon quantum dots (CQDs), was initially synthesized and then rationally constructed a folic acid (FA)-targeted photothermal multifunctional nanoplatform by encapsulating CQDs and the anticancer drug doxorubicin (DOX) in the liposomes. Indocyanine green (ICG), a near infrared (NIR) photothermal agent, approved by the U.S. Food and Drug Administration, was embedded in the bilayer membrane to further enhance the photothermal effects and facilitate the rapid cleavage of liposomes for drug release. Triggered by the NIR laser, this engineered photothermal multifunctional nanoplatform, not only exhibited an excellent performance with the photothermal conversion efficiency of up to 47.14%, but also achieved controlled release of the payloads. In vitro, and in vivo experiments demonstrated that the photothermal multifunctional nanoplatform had excellent biocompatibility, enhanced tumor-specific targeting, stimuli-responsive drug release, effective cancer cell killing and tumor suppression through multi-modal synergistic therapy. The successful construction of this NIR light-triggered targeted photothermal multifunctional nanoplatform will provide a promising strategy for the design and development of synergistic chemo-photothermal combination therapy and improve the therapeutic efficacy of cancer treatment.
Collapse
Affiliation(s)
- Chenghao Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Nana Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiasheng Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy; Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania.
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Ye Z, Liu J, Liu Y, Zhao Y, Li Z, Xu B, Chen D, Wang B, Wang Q, Shen Y. Hybrid nanopotentiators with dual cascade amplification for glioma combined interventional therapy. J Control Release 2024; 372:95-112. [PMID: 38851536 DOI: 10.1016/j.jconrel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Glioma is an aggressive malignant brain tumor with a very poor prognosis for survival. The poor tumor targeting efficiency and tumor microenvironment penetration barrier also as troubles inhibited the effective glioma chemotherapy. Here, we design a core-shell structure cascade amplified hybrid catalytic nanopotentiators CFpAD with DM1 encapsulated to overcome the glioma therapeutic obstacles. NIR laser-based BBB penetrating enhances the tumor accumulation of CFpAD. When CFpAD, as the cascade amplified drug, is treated on the cancer cells, the bomb-like CFpAD releases gold nanoparticles as glucose oxidase (GOx) and ferric oxide nanoparticles (FNPs) as peroxides (POx) after blasting, producing ROS via a cascade amplification for tumor cell apoptosis. Gold nanoparticles can rest CAFs and reduce ECM secretion, achieving deep penetration of CFpAD. Moreover, CFpAD also cuts off the nutritional supply of the tumor, reduces the pH value, and releases free radicals to destroy the cancer. The glioma cell viability was significantly decreased through DNA damage and ROS aggregation due to the DM1-based chemotherapy synergistically combined with interventional photothermal therapy (IPTT) and radiotherapy (RT). This domino cascade amplified loop, combined with starvation therapy with IPTT and RT, has good tumor penetration and outstanding antitumor efficacy, and is a promising glioma treatment system.
Collapse
Affiliation(s)
- Zixuan Ye
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ji Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yanyan Liu
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yan Zhao
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhen Li
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Bohui Xu
- School of Pharmacy, Nantong University, No.19 Qixiu Road, Nantong 226001,China
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Buhai Wang
- Cancer Institute of Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225000, China.
| | - Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Yan Shen
- Department of Pharmaceutics, State Key Laboratory of Nature Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
3
|
Zhang Q, Zhuang T, Sun X, Bao Y, Zhu L, Zhang Q, Han J, Guo R. "Four-in-One" Nanozyme for Amplified Catalytic-Photothermal Therapy. J Colloid Interface Sci 2024; 665:1-9. [PMID: 38513403 DOI: 10.1016/j.jcis.2024.03.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The cancer therapeutic efficacy of the peroxidase (POD)-mimicking nanozyme-based monotherapy is significantly hindered due to insufficient intratumoral hydrogen peroxide (H2O2) and glutathione (GSH) consumption effect on reactive oxygen species (ROS). In this study, we present the development of poly(o-phenylenediamine)@gold nanoparticles (AuNPs) (PoPD@Au) nanocomposites for multifunctional catalytic-photothermal therapy. These nanocomposites exhibit triple distinct nanozymatic activities, i.e., POD-like activity that catalyzes H2O2 to ROS, glucose oxidase (GOx)-like activity that supplements endogenous H2O2, and GSH depleting activity that decreases the ROS consumption efficiency. This open source and reduce expenditure strategy for ROS generation allows for the amplification of tumor oxidative stress, thereby enhancing anti-tumor efficiency. Additionally, the PoPD@Au nanocomposites demonstrate outstanding photothermal conversion efficiency, contributing to the synergistic effect between PoPD and AuNPs. Moreover, we reveal the improved photothermal performance of PoPD@Au triggered by the tumor microenvironment pH, which provides additional benefits for targeted catalytic-photothermal therapy. This "four-in-one" design of PoPD@Au enables efficient anti-tumor effects both in vitro and in vivo, making it a universal strategy for engineering catalytic-photothermal therapeutic nanoagents.
Collapse
Affiliation(s)
- Qing Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Tinglong Zhuang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225002, China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Yanli Bao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Liqi Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225002, China
| | - Quan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Jiang H, Fang W, Xu S, Luo H, Li D, Liu Y, Zeng Z, Tong Y, Zhao L. Synergistic quorum sensing inhibition and mild-temperature photothermal therapy of integrated nanoplatform for implant-associated biofilm infections. J Colloid Interface Sci 2024; 663:143-156. [PMID: 38401436 DOI: 10.1016/j.jcis.2024.02.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
In current clinical practice, the presence of biofilms poses a significant challenge in the effective elimination of bacterial infections because of the physical and chemical barriers formed by biofilms, which offer persistent protection to bacteria. Here, we developed hollow mesoporous polydopamine (hMP) nanoparticles (NPs) loaded with luteolin (Lu) as a quorum sensing inhibitor, which were further coated with hyaluronic acid (HA) shells to create hMP-Lu@HA NPs. We observed that upon reaching the infection site, the HA shells underwent initial degradation by the hyaluronidase enzyme present in the bacterial infection's microenvironment to expose the hMP-Lu NPs. Subsequently, Lu was released in response to the acidic conditions characteristic of bacterial infections, which effectively hindered and dispersed the biofilm. Moreover, when subjected to near-infrared irradiation, the robust photothermal conversion effect of hMP NPs accelerated the release of Lu and disrupted the integrity of the biofilms by localized heating. This dual action enhanced the eradication of the biofilm infection. Importantly, hMP-Lu@HA NPs also promoted tissue regeneration and healing at the implantation site, concurrently addressing biofilm infection. Taken together, this nanosystem, combined with mild-temperature photothermal therapy and quorum sensing inhibition strategy, holds significant potential for applications in the treatment of implantation-associated infections.
Collapse
Affiliation(s)
- Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wenlan Fang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Shiqi Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Haimeng Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dongqiu Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Zeng
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China.
| | - Yan Tong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China.
| |
Collapse
|
5
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Wang L, Wang W, Wang Y, Tao W, Hou T, Cai D, Liu L, Liu C, Jiang K, Lin J, Zhang Y, Zhu W, Han C. The Graphene Quantum Dots Gated Nanoplatform for Photothermal-Enhanced Synergetic Tumor Therapy. Molecules 2024; 29:615. [PMID: 38338360 PMCID: PMC10856627 DOI: 10.3390/molecules29030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Currently, the obvious side effects of anti-tumor drugs, premature drug release, and low tumor penetration of nanoparticles have largely reduced the therapeutic effects of chemotherapy. A drug delivery vehicle (MCN-SS-GQDs) was designed innovatively. For this, the mesoporous carbon nanoparticles (MCN) with the capabilities of superior photothermal conversion efficiency and high loading efficiency were used as the skeleton structure, and graphene quantum dots (GQDs) were gated on the mesopores via disulfide bonds. The doxorubicin (DOX) was used to evaluate the pH-, GSH-, and NIR-responsive release performances of DOX/MCN-SS-GQDs. The disulfide bonds of MCN-SS-GQDs can be ruptured under high glutathione concentration in the tumor microenvironment, inducing the responsive release of DOX and the detachment of GQDs. The local temperature of a tumor increases significantly through the photothermal conversion of double carbon materials (MCN and GQDs) under near-infrared light irradiation. Local hyperthermia can promote tumor cell apoptosis, accelerate the release of drugs, and increase the sensitivity of tumor cells to chemotherapy, thus increasing treatment effect. At the same time, the detached GQDs can take advantage of their extremely small size (5-10 nm) to penetrate deeply into tumor tissues, solving the problem of low permeability of traditional nanoparticles. By utilizing the photothermal properties of GQDs, synergistic photothermal conversion between GQDs and MCN was realized for the purpose of synergistic photothermal treatment of superficial and deep tumor tissues.
Collapse
Affiliation(s)
- Lipin Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Wenbao Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Yufang Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Wenli Tao
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Tingxing Hou
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar 161006, China; (D.C.); (L.L.)
| | - Likun Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar 161006, China; (D.C.); (L.L.)
| | - Chang Liu
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Ke Jiang
- Qiqihar Center for Disease Control and Prevention, Qiqihar 161006, China;
| | - Jiayin Lin
- College of Discipline Inspection and Supervision, Qiqihar Medical University, Qiqihar 161006, China;
| | - Yujing Zhang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Wenquan Zhu
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China; (L.W.); (W.W.); (Y.W.); (W.T.); (T.H.); (C.L.); (Y.Z.)
| |
Collapse
|
7
|
Ruhoff V, Arastoo MR, Moreno-Pescador G, Bendix PM. Biological Applications of Thermoplasmonics. NANO LETTERS 2024; 24:777-789. [PMID: 38183300 PMCID: PMC10811673 DOI: 10.1021/acs.nanolett.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Thermoplasmonics has emerged as an extraordinarily versatile tool with profound applications across various biological domains ranging from medical science to cell biology and biophysics. The key feature of nanoscale plasmonic heating involves remote activation of heating by applying laser irradiation to plasmonic nanostructures that are designed to optimally convert light into heat. This unique capability paves the way for a diverse array of applications, facilitating the exploration of critical biological processes such as cell differentiation, repair, signaling, and protein functionality, and the advancement of biosensing techniques. Of particular significance is the rapid heat cycling that can be achieved through thermoplasmonics, which has ushered in remarkable technical innovations such as accelerated amplification of DNA through quantitative reverse transcription polymerase chain reaction. Finally, medical applications of photothermal therapy have recently completed clinical trials with remarkable results in prostate cancer, which will inevitably lead to the implementation of photothermal therapy for a number of diseases in the future. Within this review, we offer a survey of the latest advancements in the burgeoning field of thermoplasmonics, with a keen emphasis on its transformative applications within the realm of biosciences.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Guillermo Moreno-Pescador
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| |
Collapse
|
8
|
Kianpour M, Huang CW, Vejvisithsakul PP, Wang JY, Li CF, Shiao MS, Pan CT, Shiue YL. Aptamer/doxorubicin-conjugated nanoparticles target membranous CEMIP2 in colorectal cancer. Int J Biol Macromol 2023; 245:125510. [PMID: 37353120 DOI: 10.1016/j.ijbiomac.2023.125510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The objectives were to identify the functional domains of a potential oncoprotein, cell migration inducing hyaluronidase 2 (CEMIP2), evaluate its expression levels and roles in colorectal cancer (CRC), and develop an aptamer-based nanoparticle for targeted therapy. Data mining on TCGA identified that CEMIP2 might play oncogenic roles in CRC. In a local cohort, CEMIP2 mRNA levels significantly stepwise increase in CRC patients with higher stages, and high CEMIP2 confers worse disease-free survival. In addition, CEMIP2 mRNA levels significantly correlated to hyaluronan levels in sera from CRC patients. Deletion mapping identified that CEMIP2 containing G8 and PANDER-like domains preserved hyaluronidase activity and oncogenic roles, including cell proliferation, anchorage-independent cell growth, cell migration and invasion, and human umbilical vein endothelial cell (HUVEC) tube formation in CRC-derived cells. A customized monoclonal mouse anti-human CEMIP2 antibody probing the PANDER-like domain (anti-289307) counteracted CEMIP2-mediated carcinogenesis in vitro. Cell-SELEX pinpointed an aptamer, aptCEMIP2(101), specifically interacted with the full-length CEMIP2, potentially involving its 3D structure. Treatments with aptCEMIP2(101) significantly reduced CEMIP2-mediated tumorigenesis in vitro. Mesoporous silica nanoparticles (MSN) carrying atpCEMIP2(101) and Dox were fabricated. Dox@MSN, MSN-aptCEMIP2(101), and Dox@MSN-aptCEMIP2(101) significantly suppressed tumorigenesis in vitro compared to the Mock, while Dox@MSN-aptCEMIP2(101) showed substantially higher effects compared to Dox@MSN and MSN-aptCEMIP2(101) in CRC-derived cells. Our study identified a novel oncogene and developed an effective aptamer-based targeted therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Kianpour
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Pichpisith Pierre Vejvisithsakul
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Pingtung Hospital, Ministry of Health and Welfare, Pingtung 900214, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan 71004, Taiwan; Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Cheng-Tang Pan
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
9
|
Customized multi-stimuli nanovehicles with dissociable 'bomblets' for photothermal-enhanced synergetic tumor therapy. Colloids Surf B Biointerfaces 2023; 222:113083. [PMID: 36542948 DOI: 10.1016/j.colsurfb.2022.113083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Recently, the therapeutic effect of chemotherapy has been obviously impaired due to premature drug release, low tumor penetration, and multidrug resistance of nanoplatforms. In this paper, a novel multiple-sensitive drug delivery system (MC-ss-CDs) was developed by gating long-wavelength emitting carbon dots (CDs) on the openings of mesoporous carbon nanoparticles (MC) through disulfide bonds. The MC with excellent photothermal transition efficiency and high drug storage capacity for doxorubicin (DOX) was used as the delivery carrier. The CDs had multiple functions, including intelligent switching to hinder unwanted release, photothermal therapy (PTT) agents to improve the heat generation effect of MCs and bioimaging trackers to monitor drug delivery. The disulfide bonds, as the linkers between MC carriers and CDs, are stable under normal physical conditions and relatively labile under high GSH concentrations in the cytoplasm of tumor cells. After arriving at the tumor microenvironment, DOX/MC-ss-CDs can rapidly break into DOX/MC and CDs under high GSH concentrations. DOX/MC could realize efficient integration of PTT and chemotherapy on the surface of the tumor by stimuli-responsive DOX release and synergetic heating of MC and CDs. The small-sized CDs with excellent penetrating ability could effectively enter the deep tumor and realize NIR-triggered photothermal ablation. The DOX/MC-ss-CDs showed a chemophotothermal effect with a combination index of 0.38 in vitro and in vivo. Therefore, the DOX/MC-ss-CDs could be employed as a trackable nanovehicle for synergistic chemotherapy and PTT at different depths.
Collapse
|
10
|
Vischio F, Carrieri L, Bianco GV, Petronella F, Depalo N, Fanizza E, Scavo MP, De Sio L, Calogero A, Striccoli M, Agostiano A, Giannelli G, Curri ML, Ingrosso C. Au nanoparticles decorated nanographene oxide-based platform: Synthesis, functionalization and assessment of photothermal activity. BIOMATERIALS ADVANCES 2023; 145:213272. [PMID: 36586204 DOI: 10.1016/j.bioadv.2022.213272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
A novel hybrid nanocomposite formed of carboxylated Nano Graphene Oxide (c-NGO), highly densely decorated by monodisperse citrate-coated Au nanoparticles (c-NGO/Au NPs), is synthesized and thoroughly characterized for photothermal applications. A systematic investigation of the role played by the synthetic parameters on the Au NPs decoration of the c-NGO platform is performed, comprehensively studying spectroscopic and morphological characteristics of the achieved nanostructures, thus elucidating their still not univocally explained synthesis mechanism. Remarkably, the Au NPs coating density of the c-NGO sheets is much higher than state-of-the-art systems with analogous composition prepared with different approaches, along with a higher NPs size dispersion. A novel theoretical approach for estimating the average number of NPs per sheet, combining DLS and TEM results, is developed. The assessment of the c-NGO/Au NPs photothermal activity is performed under continuous wave (CW) laser irradiation, at 532 nm and 800 nm, before and after functionalization with PEG-SH. c-NGO/Au NPs composite behaves as efficient photothermal agent, with a light into heat conversion ability higher than that of the single components. The c-NGO/Au NPs compatibility for photothermal therapy is assessed by in vitro cell viability tests, which show no significant effects of c-NGO/Au NPs, as neat and PEGylated, on cell metabolic activity under the investigated conditions. These results demonstrate the great potential held by the prepared hybrid nanocomposite for photothermal conversion technologies, indicating it as particularly promising platform for photothermal ablation of cancer cells.
Collapse
Affiliation(s)
- Fabio Vischio
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; CNR-IPCF Bari Division, Via Orabona 4, 70125 Bari, Italy
| | - Livianna Carrieri
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 21, 70013 - Castellana Grotte, Bari, Italy
| | | | | | | | - Elisabetta Fanizza
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; CNR-IPCF Bari Division, Via Orabona 4, 70125 Bari, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 21, 70013 - Castellana Grotte, Bari, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | | | - Angela Agostiano
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; CNR-IPCF Bari Division, Via Orabona 4, 70125 Bari, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, 70013 Castellana Grotte, Bari, Italy
| | - Maria Lucia Curri
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; CNR-IPCF Bari Division, Via Orabona 4, 70125 Bari, Italy.
| | | |
Collapse
|
11
|
Sui D, Li C, Tang X, Meng X, Ding J, Yang Q, Qi Z, Liu X, Deng Y, Song Y. Sialic acid-mediated photochemotherapy enhances infiltration of CD8 + T cells from tumor-draining lymph nodes into tumors of immunosenescent mice. Acta Pharm Sin B 2023; 13:425-439. [PMID: 36815045 PMCID: PMC9939359 DOI: 10.1016/j.apsb.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 11/01/2022] Open
Abstract
Immunoscenescence plays a key role in the initiation and development of tumors. Furthermore, immunoscenescence also impacts drug delivery and cancer therapeutic efficacy. To reduce the impact of immunosenescence on anti-tumor therapy, this experimental plan aimed to use neutrophils with tumor tropism properties to deliver sialic acid (SA)-modified liposomes into the tumor, kill tumor cells via SA-mediated photochemotherapy, enhance infiltration of neutrophils into the tumor, induce immunogenic death of tumor cells with chemotherapy, enhance infiltration of CD8+ T cells into the tumor-draining lymph nodes and tumors of immunosenescent mice, and achieve SA-mediated photochemotherapy. We found that CD8+ T cell and neutrophil levels in 16-month-old mice were significantly lower than those in 2- and 8-month-old mice; 16-month-old mice exhibited immunosenescence. The anti-tumor efficacy of SA-mediated non-photochemotherapy declined in 16-month-old mice, and tumors recurred after scabbing. SA-mediated photochemotherapy enhanced tumor infiltration by CD8+ T cells and neutrophils, induced crusting and regression of tumors in 8-month-old mice, inhibited metastasis and recurrence of tumors and eliminated the immunosenescence-induced decline in antitumor therapeutic efficacy in 16-month-old mice via the light-heat-chemical-immunity conversion.
Collapse
|
12
|
Wang F, Yu Q, Li J, Jiang J, Deng T, Yu C. Biomimetic macrophage membrane-coated gold-quantum dots with tumor microenvironment stimuli-responsive capability for tumor theranostic. Mater Today Bio 2022; 16:100359. [PMID: 35937575 PMCID: PMC9352966 DOI: 10.1016/j.mtbio.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Tumor microenvironment (TME) is intently related to tumor growth, progression and invasion, leading to drug resistance and insufficient therapeutic efficacy. However, remodeling TME and utilizing TME for exploring intelligent nanomaterials that can realize tumor theranostic is still challenging. Nowadays, the theranostic based on chemotherapy exposes some deficiencies, such as low targeting, weak permeability and premature clearance. Furthermore, it is challenging to cure drug-resistant tumors effectively. For the sake of solving these problems, a biomimetic decomposable nano-theranostic (MMV-Au-CDs-DOX) was well-established in this work. The Au-CDs are coated with macrophage-derived microvesicle to realize drug release accurately and enhance the biocompatibility of internal nanoparticles. Furthermore, MMV-Au-CDs-DOX would locate in the inflammation position of tumor, and disintegrate correspondingly into pieces with certain different functions stimulated by TME. Subsequently, the released anti-tumor nanodrugs were used for multimodal therapy, including chemotherapy and hemodynamic therapy. In addition, combined with the ability of Au-CDs to recognize GSH specifically, the off-on fluorescent probe was constructed to monitor the GSH of tumor cells and provided information on chemotherapy resistance.
Collapse
Affiliation(s)
- Fan Wang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China
| | - Qinghua Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China
| | - Jia Li
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China
| | - Junhao Jiang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China
| | - Tao Deng
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China
- Corresponding author. Chongqing pharmacodynamic evaluation engineering technology research center, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China.
| | - Chao Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China
- Corresponding author. Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing, 40016, China.
| |
Collapse
|
13
|
Zhao Q, Xie P, Li X, Wang Y, Zhang Y, Wang S. Magnetic mesoporous silica nanoparticles mediated redox and pH dual-responsive target drug delivery for combined magnetothermal therapy and chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Gold nanoparticles for skin drug delivery. Int J Pharm 2022; 625:122122. [PMID: 35987319 DOI: 10.1016/j.ijpharm.2022.122122] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-based drug carriers are being pursued intensely to overcome the skin barrier and improve even hydrophilic or macromolecular drug delivery into or across the skin efficiently. Over the past few years, the application of gold nanoparticles as a novel kind of drug carrier for skin drug delivery has attracted increasing attention because of their unique properties and versatility. In this review, we summarized the possible factors contributing to the penetration behaviors of gold nanoparticles, including size, surface chemistry, and shape. Drug loading, release, and penetration patterns were captured towards implicating the design of gold nanoparticles for dermal or transdermal drug delivery. Physical methods applicable for future enhancing the delivery efficacy of GNPs were also presented, which mainly included microneedles and iontophoresis. As a promising "drug", the inherent activities of GNPs were finally discussed, especially regarding their application in the treatment of skin disease. Thus, this paper provided a comprehensive review of the use of gold nanoparticles for skin drug delivery, which would help the design of multifunctional systems for skin drug delivery based on gold nanoparticles.
Collapse
|
15
|
Li C, Gao F, Tong Y, Chang F, Han H, Liu C, Xu M, Li H, Zhou J, Li X, Wang F, Jiang Y. NIR-Ⅱ window Triple-mode antibacterial Nanoplatform: Cationic Copper sulfide nanoparticles combined vancomycin for synergistic bacteria eradication. J Colloid Interface Sci 2022; 628:595-604. [PMID: 36027770 DOI: 10.1016/j.jcis.2022.08.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/27/2022]
Abstract
The widespread use of antibiotics leads to the increasing drug resistance of bacteria and poses a threat to human health. Therefore, there is an urgent need to develop new antibacterial strategies. Herein, based on the good photothermal properties of Copper sulfide (CuS) nanoparticles under near infrared (NIR) laser, we developed a NIR-Ⅱ window triple-mode synergetic antibacterial cCuS (cationic CuS) @Vancomycin (Van) nanoplatform. In the proposed nanoplatform, the positive charge on the surface makes cCuS@Van nanoplatform show better bacterial uptake and membrane damage; vancomycin induces chemical sterilization and provides a targeting effect to the nanoplatform; combined with the strong photothermal effect and deep tissue penetration at the excitation of 1064 nm laser, cCuS@Van nanoplatform can effectively kill bacterial. The photothermal conversion efficiency of the nanoplatform can reach 49.12 % and in vitro experiments show a sterilizing rate of more than 99.5 % to staphylococcus aureus (S. aureus) at the concentration of 3.0 μM, which also demonstrated the synergistic effect of cCuS@Van nanoplatform. In addition, low cytotoxicity to human cells conforms the good biocompatibility of the as-prepared cCuS@Van nanoplatform, which endows it a good application prospect in the field of antibacterial, such as wound healing and implant sterilization.
Collapse
Affiliation(s)
- Can Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Fei Chang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Congrui Liu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Mengchen Xu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Jing Zhou
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China.
| |
Collapse
|
16
|
Fu C, Lu J, Wu Y, Li Y, Liu J. Chemodrug-gated mesoporous nanoplatform for new near-infrared light controlled drug release and synergistic chemophotothermal therapy of tumours. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211004. [PMID: 36061526 PMCID: PMC9428526 DOI: 10.1098/rsos.211004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/01/2022] [Indexed: 05/10/2023]
Abstract
Controlled drug release and synergistic therapies have an important impact on improving therapeutic efficacy in cancer theranostics. Herein, a new near-infrared (NIR) light-controlled multi-functional nanoplatform (GNR@mSiO2-DOX/PFP@PDA) was developed for synergistic chemo-photothermal therapy (PTT) of tumours. In this nano-system, doxorubicin hydrochloride (DOX) and perfluoro-n-pentane (PFP) were loaded into the channels of mesoporous SiO2 simultaneously as a first step. A polydopamine (PDA) layer as the gatekeeper was coated on their surface to reduce premature release of drugs at physiological temperature. Upon 808 nm NIR irradiation, the gold nanorods (GNR) in the core of the nanoplatform show high photothermal conversion efficiency, which not only can provide the heat for PTT, but also can decompose the polymer PDA to allow DOX release from the channels of mesoporous SiO2. Most importantly, the photothermal conversion of GNR can also lead the liquid-gas phase transition of PFP to generate bubbles to accelerate the release of DOX, which can realize the chemotherapy of tumours. The subsequent synergistic chemo-PTT (contributed by the DOX and GNR) shows good anti-cancer activity. This work shows that the NIR-triggered multi-functional nanoplatform is of capital significance for future potential applications in drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Cuiping Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jialin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
17
|
Fu C, Lu J, Wu Y, Li Y, Liu J. Chemodrug-gated mesoporous nanoplatform for new near-infrared light controlled drug release and synergistic chemophotothermal therapy of tumours. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211004. [PMID: 36061526 DOI: 10.6084/m9.figshare.c.6133913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/01/2022] [Indexed: 05/25/2023]
Abstract
Controlled drug release and synergistic therapies have an important impact on improving therapeutic efficacy in cancer theranostics. Herein, a new near-infrared (NIR) light-controlled multi-functional nanoplatform (GNR@mSiO2-DOX/PFP@PDA) was developed for synergistic chemo-photothermal therapy (PTT) of tumours. In this nano-system, doxorubicin hydrochloride (DOX) and perfluoro-n-pentane (PFP) were loaded into the channels of mesoporous SiO2 simultaneously as a first step. A polydopamine (PDA) layer as the gatekeeper was coated on their surface to reduce premature release of drugs at physiological temperature. Upon 808 nm NIR irradiation, the gold nanorods (GNR) in the core of the nanoplatform show high photothermal conversion efficiency, which not only can provide the heat for PTT, but also can decompose the polymer PDA to allow DOX release from the channels of mesoporous SiO2. Most importantly, the photothermal conversion of GNR can also lead the liquid-gas phase transition of PFP to generate bubbles to accelerate the release of DOX, which can realize the chemotherapy of tumours. The subsequent synergistic chemo-PTT (contributed by the DOX and GNR) shows good anti-cancer activity. This work shows that the NIR-triggered multi-functional nanoplatform is of capital significance for future potential applications in drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Cuiping Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jialin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
18
|
Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. NANOMATERIALS 2022; 12:nano12101738. [PMID: 35630959 PMCID: PMC9146553 DOI: 10.3390/nano12101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Cancer is a major global health issue and is a leading cause of mortality. It has been documented that various conventional treatments can be enhanced by incorporation with nanomaterials. Thanks to their rich optical properties, excellent biocompatibility, and tunable chemical reactivities, gold nanostructures have been gaining more and more research attention for cancer treatment in recent decades. In this review, we first summarize the recent progress in employing three typical gold nanostructures, namely spherical Au nanoparticles, Au nanorods, and atomically precise Au nanoclusters, for cancer diagnostics and therapeutics. Following that, the challenges and the future perspectives of this field are discussed. Finally, a brief conclusion is summarized at the end.
Collapse
|
19
|
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2041-2067. [PMID: 35571258 PMCID: PMC9094645 DOI: 10.2147/ijn.s355142] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients’ lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients’ lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xuefeng Gong
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Hao Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Correspondence: Yuxuan Zhu, Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China, Email
| |
Collapse
|
20
|
Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Cao T, Tong W, Feng F, Zhang S, Li Y, Liang S, Wang X, Chen Z, Zhang Y. H 2O 2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022. [PMID: 34899039 DOI: 10.1016/j.cej.2022.134886] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With the outbreak of COVID-19, microbial pollution has gained increasing attention as a threat to human health. Consequently, many research efforts are being devoted to the development of efficient disinfection methods. In this context, hydrogen peroxide (H2O2) stands out as a green and broad-spectrum disinfectant, which can be produced and sprayed in the air directly by cavitation in ultrasonic nebulisation. However, the yield of H2O2 obtained by ultrasonic nebulisation is too low to satisfy the requirements for disinfection by spraying and needs to be improved to achieve efficient disinfection of the air and objects. Herein, we report the introduction of a zinc layer into an ultrasonic nebuliser to improve the production of H2O2 and generate additional Zn2+ by self-corrosion, achieving good disinfecting performance. Specifically, a zinc layer was assembled on the oscillator plate of a commercial ultrasonic nebuliser, resulting in a 21-fold increase in the yield of H2O2 and the production of 4.75 μg/mL Zn2+ in the spraying droplets. When the generated water mist was used to treat a bottle polluted with Escherichia coli for 30 min, the sterilisation rate reached 93.53%. This ultrasonic nebulisation using a functional zinc layer successfully enhanced the production of H2O2 while generating Zn2+, providing a platform for the development of new methodologies of spray disinfection.
Collapse
Affiliation(s)
- Tingting Cao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Feng Feng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yanan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
22
|
Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L. Optimization of Nanoparticles for Smart Drug Delivery: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2790. [PMID: 34835553 PMCID: PMC8622036 DOI: 10.3390/nano11112790] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Nanoparticle delivery systems have good application prospects in the treatment of various diseases, especially in cancer treatment. The effect of drug delivery is regulated by the properties of nanoparticles. There have been many studies focusing on optimizing the structure of nanoparticles in recent years, and a series of achievements have been made. This review summarizes the optimization strategies of nanoparticles from three aspects-improving biocompatibility, increasing the targeting efficiency of nanoparticles, and improving the drug loading rate of nanoparticles-aiming to provide some theoretical reference for the subsequent drug delivery of nanoparticles.
Collapse
Affiliation(s)
- Lina Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Yuguo Dai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Shuzhang Liang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Xue Bai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
23
|
Xu Y, Wang H, Zhang M, Zhang J, Yan W. Plasmon-Enhanced Antibacterial Activity of Chiral Gold Nanoparticles and In Vivo Therapeutic Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1621. [PMID: 34205616 PMCID: PMC8233931 DOI: 10.3390/nano11061621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023]
Abstract
d-cysteine (d-cys) has been demonstrated to possess an extraordinary antibacterial activity because of its unique steric configuration. However, inefficient antibacterial properties seriously hinder its wide applications. Here, cysteine-functionalized gold nanoparticles (d-/l-Au NPs) were prepared by loading d-/l-cysteine on the surface of gold nanoparticles for the effective inhibition of Escherichia coli (E. coli) in vitro and in vivo, and the effects on the intestinal microflora in mice were explored during the treatment of E. coli infection in the gut. We found that the antibacterial activity of d-/l-Au NPs was more than 2-3 times higher than pure d-cysteine, l-cysteine and Au NPs. Compared with l-Au NPs, d-Au NPs showed the stronger antibacterial activity, which was related to its unique steric configuration. Chiral Au NPs showed stronger destructive effects on cell membrane compared to other groups, which further leads to the leakage of the cytoplasm and bacterial cell death. The in vivo antibacterial experiment illustrated that d-Au NPs displayed impressive antibacterial activity in the treatment of E. coli-infected mice comparable to kanamycin, whereas they could not affect the balance of intestinal microflora. This work is of great significance in the development of an effective chiral antibacterial agent.
Collapse
Affiliation(s)
| | | | | | | | - Wenjing Yan
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.X.); (H.W.); (M.Z.); (J.Z.)
| |
Collapse
|
24
|
Zhang Y, Zhou T, Li J, Xu N, Cai M, Zhang H, Zhao Q, Wang S. Au Catalyzing Control Release NO in vivo and Tumor Growth-Inhibiting Effect in Chemo-Photothermal Combination Therapy. Int J Nanomedicine 2021; 16:2501-2513. [PMID: 33824588 PMCID: PMC8018432 DOI: 10.2147/ijn.s270466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Aim to obtain a NO donor that can control released NO in vivo with the high efficacy of tumor suppression and targeting, a nanoplatform consisting of FA-Fe3O4@mSiO2-Au/DOX was constructed. METHODS In vitro, the nanoplatform catalyzed NO's release with the maximum value of 4.91 μM within 60 min at 43°C pH=5.0, which was increased by 1.14 times when the temperature was 37°C. In vivo, 11.7 μg Au in the tumor tissue was found to catalyze S-nitrosoglutathione continuously, and 54 μM NO was checked out in the urine. RESULTS AND DISCUSSION The high concentration of NO was found to increase the apoptotic rate and to reduce tumor proliferation. In the chemo-photothermal combination therapy, the tumor inhibition rate was increased up to 94.3%, and Au's contribution from catalyzing NO release NO was 8.17%.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Tianfu Zhou
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Jian Li
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Nuo Xu
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Mingze Cai
- Key Laboratory of TargetDrug Design and Research, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Hong Zhang
- Van ’T Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1098 XH, the Netherlands
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| |
Collapse
|
25
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Polydopamine-carbon dots functionalized hollow carbon nanoplatform for fluorescence-imaging and photothermal-enhanced thermochemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111908. [PMID: 33641904 DOI: 10.1016/j.msec.2021.111908] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/01/2023]
Abstract
The low power photothermal therapy can reduce the tissue damage caused by laser irradiation, thus the near-infrared (NIR) absorbing vehicles with high photothermal conversion efficiency are demanded in the low power treatment. Herein, the NIR-absorbing agent polydopamine (PDA) and carbon dots (CDs) were gated on the openings of hollow mesoporous carbon (HMC) to construct a photothermal enhanced multi-functional system (HMC-SS-PDA@CDs). Interestingly, the fluorescence emission wavelength of HMC-SS-PDA@CDs was red-shifted by FRET effect between PDA and CDs, which solved the dilemma of fluorescence quenching of carbon-based materials and was more conducive to cell imaging. The modification of PDA@CDs not only acts as the gatekeepers to realize multi-responsive release of pH, GSH and NIR, but also endows the HMC vehicle with excellent photothermal generation capacity, the possibility for bio-imaging as well as the enhanced stability. Naturally, both the cytological level and the multicellular tumor sphere level demonstrate that the delivery system has good low-power synergistic therapeutic with combination index (CI) of 0.348 and imaging effects. Meanwhile, the combined treatment group showed the highest tumor inhibition rate of 92.6% at 0.75 W/cm2. Therefore, DOX/HMC-SS-PDA@CDs nano-platform had broad application prospects in low power therapy and convenient imaging of carbon-based materials.
Collapse
|
27
|
Zhang Y, Zhou H, Zhang Z, Zhu Y, Wang T, Yu L, Song H. Redox/NIR dual-responsive PEG-betulinic acid/pluronic-cypate prodrug micelles for chemophotothermal therapy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Gold nanoparticles gated mesoporous carbon with optimal particle size for photothermal-enhanced thermochemotherapy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Venditti I, Iucci G, Fratoddi I, Cipolletti M, Montalesi E, Marino M, Secchi V, Battocchio C. Direct Conjugation of Resveratrol on Hydrophilic Gold Nanoparticles: Structural and Cytotoxic Studies for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1898. [PMID: 32977463 PMCID: PMC7598182 DOI: 10.3390/nano10101898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Strongly hydrophilic gold nanoparticles (AuNPs), functionalized with citrate and L-cysteine, were synthetized and used as Resveratrol (RSV) vehicle to improve its bioavailability. Two different conjugation procedures were investigated: the first by adding RSV during AuNPs synthesis (1) and the second by adding RSV after AuNPs synthesis (2). The two different conjugated systems, namely AuNPs@RSV1 and AuNPs@RSV2 respectively, showed good loading efficiency (η%): η1 = 80 ± 5% for AuNPs@RSV1 and η2 = 20 ± 3% for AuNPs@RSV2. Both conjugated systems were investigated by means of Dynamic Light Scattering (DLS), confirming hydrophilic behavior and nanodimension (<2RH> 1 = 45 ± 12 nm and <2RH> 2 = 170 ± 30 nm). Fourier Transform Infrared Spectroscopy (FT-IR), Synchrotron Radiation induced X-Ray Photoelectron Spectroscopy (SR-XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) techniques were applied to deeply understand the hooking mode of RSV on AuNPs surface in the two differently conjugated systems. Moreover, the biocompatibility of AuNPs and AuNPs@RSV1 was evaluated in the concentration range 1.0-45.5 µg/mL by assessing their effect on breast cancer cell vitality. The obtained data confirmed that, at the concentration used, AuNPs do not induce cell death, whereas AuNPs@RSV1 maintains the same anticancer effects as the unconjugated RSV.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Manuela Cipolletti
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Emiliano Montalesi
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Maria Marino
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Valeria Secchi
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| |
Collapse
|
30
|
Lu L, Zhang C, Zou B, Wang Y. Hollow Prussian Blue Nanospheres for Photothermal/Chemo-Synergistic Therapy. Int J Nanomedicine 2020; 15:5165-5177. [PMID: 32764943 PMCID: PMC7373408 DOI: 10.2147/ijn.s252505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The integration of NIR photothermal therapy and chemotherapy is considered as a promising technique for future cancer therapy. Hollow Prussian nanospheres have attracted much attention due to excellent near-infrared photothermal conversion effect and drug-loading capability within an empty cavity. However, to date, the hollow Prussian nanospheres have been prepared by a complex procedure or in organic media, and their shell thickness and size cannot be controlled. Thus, a simple and controllable route is highly desirable to synthesize hollow Prussian nanospheres with controllable parameters. MATERIALS AND METHODS Here, in our designed synthesis route, the traditional FeCl3 precursor was replaced with Fe2O3 nanospheres, and then the Prussian blue (PB) nanoparticles were engineered into hollow-structured PB (HPB) nanospheres through an interface reaction, where the Fe2O3 colloidal template provides Fe3+ ions. The reaction mechanism and control factors of HPB nanospheres were systematically investigated. Both in vitro and in vivo biological effects of the as-synthesized HPB nanospheres were evaluated in detail. RESULTS Through systematical experiments, a solvent-mediated interface reaction mechanism was put forward, and the parameters of HPB nanospheres could be easily adjusted by growth time and template size under optimal water and ethanol ratio. The in vitro tests show the rapid and remarkable photothermal effects of the as-prepared HPB nanospheres under NIR laser irradiation (808 nm). Meanwhile, HPB nanospheres also demonstrated a high DOX loading capacity of 440 mg g-1 as a drug carrier, and the release of the drug can be regulated by the heat from PB shell under the exposure of an NIR laser. The in vivo experiments confirmed the outstanding performance of HPB nanospheres in photothermal/chemo-synergistic therapy of cancer. CONCLUSION A solvent-mediated template route was developed to synthesize hollow Prussian blue (HPB) nanospheres in a simple and controllable way. The in vitro and in vivo results demonstrate the as-synthesized HPB nanospheres as a promising candidate due to their low toxicity and high efficiency for cancer therapy.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng475004, People’s Republic of China
| | - Chuanbin Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng475004, People’s Republic of China
| | - Bingfang Zou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng475004, People’s Republic of China
- School of Physics and Electronics, Henan University, Kaifeng475004, People’s Republic of China
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
31
|
Wang Y, Zhang H, Xie J, Liu Y, Wang S, Zhao Q. Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal therapy compared with two dimensional graphene oxide nanosheets. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Zhao Q, Li X, Lu J, Liu Y, Sha L, Di D, Wang S. TPGS and cypate gated mesoporous carbon for enhanced thermochemotherapy of tumor. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Lu H, Zhao Q, Wang X, Mao Y, Chen C, Gao Y, Sun C, Wang S. Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor. Colloids Surf B Biointerfaces 2020; 190:110941. [PMID: 32169778 DOI: 10.1016/j.colsurfb.2020.110941] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023]
Abstract
In this work, a traceable dual-porous mesoporous silica-coated mesoporous carbon nanocomposite (MCN@Si) with high drug loading capacity and high photothermal conversion efficiency (30.5 %) was successfully prepared. Based on the nanocomposite, a pH/redox/near infrared (NIR) multi-stimuli responsive drug delivery system was constructed to realize the accurate drug delivery, drug controlled release and chemo-photothermal synergistic antitumor therapy. MCN@Si was used as a vehicle to load doxorubicin (DOX) with a high drug loading efficacy of 48.2 % and a NIR absorbance agent for photothermal therapy and NIR thermal imaging. Carbon dots (CDs) with proper size were covalently attached to the surface of MCN@Si via disulfide bonds to block the mesopores, preventing DOX premature release from DOX/MCN@Si-CDs. Besides, CDs were served as fluorescent probe to prove the visualization potential of the drug delivery system. DOX was rapidly released at the condition of low pH and high GSH concentration due to the breakage of disulfide bonds and protonation of DOX. Moreover, the local hyperthermia generated by MCN@Si-CDs under NIR irradiation could not only directly kill cells, but also accelerate DOX release and enhance cells sensitivity and permeability. Two-dimensional cells and three-dimensional tumor spheroids assays illustrated that DOX/MCN@Si-CDs + NIR group exhibited a superior thermochemotherapy synergistic treatment effect and the combination index (CI) was 0.378. Biodistribution study showed the biosecurity of preparations and its prolonged detention time in tumor sites. Besides, antitumor experiment in vivo also performed the excellent synergistic inhibition effect. All the results demonstrated that DOX/MCN@Si-CDs is a traceable multi-stimuli responsive nanodelivery system and can achieve efficient chemo-photothermal synergistic antitumor therapy.
Collapse
Affiliation(s)
- Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xiudan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Caishun Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Yikun Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Changshan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
34
|
Ma M, Du Y, Yang J, Feng Z, Ding W, Chen C. Gold nanoparticles-functionalized monolithic column for enantioseparation of eight basic chiral drugs by capillary electrochromatography. Mikrochim Acta 2020; 187:178. [PMID: 32076848 DOI: 10.1007/s00604-020-4144-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
Poly(glycidyl methacrylate)-co-(ethylene dimethacrylate) [poly(GMA-co-EDMA)] monoliths were prepared, and used as a support to attach gold nanoparticles (AuNP) via Au-S bond. Pepsin, acting as a chiral selector, was linked to the surface of the carboxyl-modified AuNP through a hydrochloride/N-hydroxysuccinimide coupling reaction. The material was characterized by scanning electron microscopy, energy dispersive X-ray spectrometry, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy and N2 adsorption-desorption isotherm. The pepsin@AuNP@poly(GMA-co-EDMA) monolith showed preferable enantioselectivity for hydroxychloroquine (HCQ), chloroquine (CHQ), hydroxyzine (HXY), labetalol (LAB), nefopam (NEF), clenbuterol (CLE), amlodipine (AML) and chlorpheniramine (CHL) in capillary electrochromatography (CEC). These racemic drugs were monitored at the maximum absorption wavelength (220 nm for HXQ, CHQ, HXY, LAB, NEF; 240 nm for AML; 215 nm for CLE, CHL). In comparison with the pepsin@poly(GMA-co-EDMA) monolith loaded with 5 nm AuNP, the pepsin@poly(GMA-co-EDMA) monolith loaded with 13 nm AuNP shows significantly enhanced enantiomeric resolution (HCQ: 0.62 → 3.45; CHQ: 0.60 → 2.11; HXY: 0.49 → 2.30; LAB: 1.03 → 2.45, 1.45 → 3.46, 0 → 0.67; NEF: 0.53 → 1.29; CLE: 0.42 → 0.56; AML: 0 → 0.83; CHL: 0.24 → 0.55). Pepsin concentration, buffer pH value, buffer concentration and applied voltage were investigated in detail with (±) HCQ and (±) HXY as model analytes. The reproducibility of intra-day, inter-day and column-to-column were explored, and found to be satisfactory. Graphical abstractSchematic presentation of the preparation of gold nanoparticles (AuNP) modified.
Collapse
Affiliation(s)
- Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Jiangxia Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wen Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, No.24 Tongjiaxiang, Nanjing, Jiangsu, 210009, People's Republic of China
| |
Collapse
|
35
|
Liu T, Wu X, Chen S, Wu P, Han H, Zhang H, Li J, Li G, Zhang S. A cationic polymeric prodrug with chemotherapeutic self-sensibilization co-delivering MMP-9 shRNA plasmid for a combined therapy to nasopharyngeal carcinoma. Drug Deliv 2019; 26:1280-1291. [PMID: 31793355 PMCID: PMC6896581 DOI: 10.1080/10717544.2019.1698674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 10/31/2022] Open
Abstract
To obtain a high-efficiency drug and gene co-delivery system to HNE-1 tumor therapy, a polymeric prodrug (PAAs-MTX) with chemotherapeutic sensibilization was synthesized consisting of a GSH-response hyperbranched poly(amido amine) (PAAs) and an antitumor drug of methotrexate (MTX). Then, the targeting molecule to HNE-1 cells, transferrin (Tf), was conjugated to form the Tf-PAAs-MTX. This polymeric prodrug could deliver MMP-9 shRNA plasmid (pMMP-9) again to form the drug and gene co-delivery system of Tf-PAAs-MTX/pMMP-9. The co-delivery system showed the effective drug and gene delivery ability with high cytotoxicity and gene transfection efficiency to HNE-1 cells. Besides that, Tf-PAAs-MTX also showed the chemotherapeutic sensibilization effect, the formulation containing PAAs segments showed much higher cytotoxicity than that of free MTX. Benefiting from the sensibilization effect and MTX/pMMP-9 co-delivery strategy, this Tf-PAAs-MTX/pMMP-9 co-delivery system exhibited the significantly improved therapeutic efficacy to HNE-1 tumor in a combined manner which was confirmed by in vitro and in vivo assays. Moreover, its biocompatibility, especially the blood compatibility was analyzed. This polymeric prodrug provided an easily delivery system combining the drug/gene co-delivery, chemotherapeutic sensibilization and targeting into one single platform, which showed a promising application in nasopharyngeal carcinoma therapy.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Device, Nanchang, China
| | - Shaohua Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peina Wu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Han
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongbin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junzheng Li
- Department of Otolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guanxue Li
- Department of Pediatric Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siyi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
36
|
Feng S, Mao Y, Wang X, Zhou M, Lu H, Zhao Q, Wang S. Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy. J Colloid Interface Sci 2019; 559:51-64. [PMID: 31610305 DOI: 10.1016/j.jcis.2019.09.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/19/2022]
Abstract
Aiming at the inefficiency and toxicity in traditional antitumor therapy, a novel multifunctional nanoplatform was constructed based on hollow mesoporous carbon (HMC) to achieve triple stimuli response and dual model antitumor therapy via chemo-photothermal synergistic effect. HMC was used as an ideal nanovehicle with a high drug loading efficiency as well as a near-infrared (NIR) photothermal conversion agent for photothermal therapy. Acid-dissoluble, luminescent ZnO quantum dots (QDs) were used as the proper sealing agents for the mesopores of HMC, conjugated to HMC via disulfide linkage to prevent drug (doxorubicin, abbreviated as Dox) premature release from Dox/HMC-SS-ZnO. After cellular endocytosis, the Dox was released in a pH, GSH and NIR laser triple stimuli-responsive manner to realize accurate drug delivery. Moreover, the local hyperthermia effect induced by NIR irradiation could promote the drug release, enhance cell sensitivity to chemotherapeutic agents, and also directly kill cancer cells. As expected, Dox/HMC-SS-ZnO exhibited a high drug loading capacity of 43%, well response to triple stimuli and excellent photothermal conversion efficiency η of 29.7%. The therapeutic efficacy in 4T1 cells and multicellular tumor spheroids (MCTSs) demonstrated that Dox/HMC-SS-ZnO + NIR had satisfactory chemo-photothermal synergistic effect with a combination index (CI) of 0.532. The cell apoptosis rate of the combined treatment group was more than 95%. The biodistribution and pharmacodynamics studies showed its biosecurity to normal tissues and synergistic inhibition effect to tumor cells. These distinguished results indicated that the Dox/HMC-SS-ZnO nanoplatform is potential to realize efficient triple stimuli-responsive drug delivery and dual model chemo-photothermal synergistic antitumor therapy.
Collapse
Affiliation(s)
- Shuang Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiudan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Meiting Zhou
- Department of Inorganic Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
37
|
Zhao Q, Wang X, Yang M, Li X, Mao Y, Guan X, Di D, Wang S. Multi-stimuli responsive mesoporous carbon nano-platform gated by human serum albumin for cancer thermo-chemotherapy. Colloids Surf B Biointerfaces 2019; 184:110532. [PMID: 31590051 DOI: 10.1016/j.colsurfb.2019.110532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/15/2022]
Abstract
In this work, a multi-stimuli responsive drug delivery system (MCHP) was designed for combinational chemotherapy and photothermal therapy (PTT). Mesoporous carbon nanoparticles (MCN) with a high loading efficiency were used as near-infrared (NIR)-responsive drug carriers. Human serum albumin (HSA) was attached to the pore openings of MCN via disulfide bonds to serve as a gatekeeper due to its biocompatibility and appropriate molecular size. To improve the dispersity and biocompatibility, the surface of the MCN was modified with polyethylene glycol (PEG). In vitro photothermal effect results showed that MCHP exhibited a power and concentration-dependent photothermal conversion capacity and a good photothermal stability. The doxorubicin (DOX) release from the MCHP/DOX system exhibited NIR/pH/reduction-responsive release properties. A cytotoxicity assay demonstrated that, under NIR irradiation, the MCHP/DOX exhibited chemo-photothermal synergistic effects with a combination index (CI) of 0.643. The biodistribution of DOX in vivo indicated that an NIR laser can prolong the retardation time of DOX in tumor sites. In vivo antitumor experiments showed that MCHP/DOX with NIR irradiation had the highest tumor inhibition rate against 4T1 tumors in mice. This work suggested that MCHP could be explored as a multi-responsive drug release platform for combinational photothermo-chemotherapy.
Collapse
Affiliation(s)
- Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiudan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ming Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xian Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|