1
|
Well-dispersed strawberry-like PtCo nanocrystals/porous N-doped carbon nanospheres for multiplexed assays. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Yang L, Zhu YP, Feng JJ, Weng X, Wang AJ. Facile pyrolysis synthesis of Pt-PtFe nanoparticles/3D porous N-doped carbon nanoflowers for highly sensitive detection of hydrazine and bisphenol A. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Peera SG, Liu C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Sandwich-like superstructure of in-situ self-assembled hetero-structured carbon nanocomposite for improving electrocatalytic oxygen reduction. J Colloid Interface Sci 2022; 616:34-43. [DOI: 10.1016/j.jcis.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
|
5
|
Well entrapped platinum-iron nanoparticles on three-dimensional nitrogen-doped ordered mesoporous carbon as highly efficient and durable catalyst for oxygen reduction and zinc-air battery. J Colloid Interface Sci 2022; 621:275-284. [PMID: 35461142 DOI: 10.1016/j.jcis.2022.04.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/19/2023]
Abstract
The high-performance and durable oxygen reduction reaction (ORR) catalyst on air cathode is a key component in assembly of Zn-air batteries. Herein, three-dimensional N-doped ordered mesoporous carbon (3D N-OMC) was first prepared with silica as a template via pyrolysis with assistance of dicyandiamide as a N-doping agent, combined by full adsorption of platinum (II) acetylacetonate (Pt(acac)2) and iron (II) phthalocyanine (FePc) via π-π interactions. After further pyrolysis of the resulting mixture, many PtFe nanoparticles were efficiently incorporated in 3D N-OMC (termed as PtFe@3D N-OMC for simplicity). Control experiments were certificated the important role of the pyrolysis temperature played in this synthesis. The resultant composite synergistically combines advantages of hierarchically accessible surfaces, highly open structure, and well-dispersed PtFe particles, which endow the PtFe@3D N-OMC with onset and half-wave potentials of 0.98 and 0.86 V in alkaline media, respectively, showing appealing catalytic activity for the ORR. Most significantly, the PtFe@3D N-OMC based Zn-air battery has a high power density of 80.57 mW cm-2 and long-term durability (220 h, 660 cycles). This work opens a new avenue for design of high-efficiency and durable ORR electrocatalysts in energy conversion and storage systems.
Collapse
|
6
|
Sun RM, Zhang L, Feng JJ, Fang KM, Wang AJ. In situ produced Co 9S 8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. J Colloid Interface Sci 2021; 608:2100-2110. [PMID: 34763290 DOI: 10.1016/j.jcis.2021.10.144] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/19/2023]
Abstract
Construction of high-efficiency, low cost and stable non-noble metal catalyst on air cathode is of great importance for design and assembly of rechargeable Zn-air battery. Eriochrome black T (EBT) has phenolic hydroxyl and -N=Ν- groups, which provides multiple coordination sites for metal ions. Herein, Co9S8 nanoclusters implanted in Co/Mn-S,N multi-doped porous carbon (Co9S8@Co/Mn-S,N-PC) are fabricated with the mixture (i.e. EBT, metal precursors and dicyandiamide) by a coordination regulated pyrolysis strategy. Specifically, EBT effectively chelates with the Co and Mn ions, resulting in multiple incorporation and fine modulation of the carbon electronic structures. Meanwhile, its sulfonic acid groups are reduced at such high temperature, accompanied by simultaneously embedding S element in the carbon, ultimately in situ forming Co9S8 nanoclusters. The Co9S8@Co/Mn-S,N-PC performs as an effective bifunctional oxygen catalyst, displaying a positive half-wave potential of 0.85 V and a large limiting current density of 5.89 mA cm-2 for oxygen reduction reaction (ORR) in alkaline media, coupled with a small overpotential of 320 mV at 10 mA cm-2 towards oxygen evolution reaction (OER), outperforming commercial Pt/C and RuO2 catalysts, respectively. Furthermore, the assembled rechargeable Zn-air battery with Co9S8@Co/Mn-S,N-PC exhibits the much better charge/discharge performance and long-term durability (210 h, 630 cycles). This research opens an instructive avenue to develop high-efficient and stable bifunctional oxygen electrocatalysts in energy transformation and storage devices.
Collapse
Affiliation(s)
- Rui-Min Sun
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ke-Ming Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Lüsi M, Erikson H, Tammeveski K, Treshchalov A, Kikas A, Piirsoo HM, Kisand V, Tamm A, Aruväli J, Solla-Gullón J, Feliu JM. Oxygen reduction reaction on Pd nanoparticles supported on novel mesoporous carbon materials. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Yan Q, Sun RM, Wang LP, Feng JJ, Zhang L, Wang AJ. Cobalt nanoparticles/ nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. J Colloid Interface Sci 2021; 603:559-571. [PMID: 34216952 DOI: 10.1016/j.jcis.2021.06.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
It remains a challenge for efficient and facile synthesis of promising non-noble metal electrocatalysts with outstanding properties. This work reported a simple pyrolysis method to prepare cobalt nanoparticles/nitrogen, sulfur-codoped ultrathin carbon nanotubes (Co NPs/N,S-CNTs) with metal organic frameworks (cobalt 2-methylimidazole, ZIF-67), melamine, polyvinylpyrrolidone (PVP) and thiourea. The prepared catalyst exhibited superior catalytic activity towards oxygen reduction reaction (ORR) such as the more positive onset potential of 0.96 V, half-wave potential of 0.86 V and smaller Tafel slope of 67.9 mV dec-1, outperforming those of commercial Pt/C. Furthermore, the Co NPs/N,S-CNTs based Zn-air battery not only showed good cycling performance, but also displayed a notable peak power density (153.8 mW cm-2) and large open-circuit voltage (1.433 V). This study provides some valuable guidelines for synthesizing advanced electrocatalysts in renewable energy techniques.
Collapse
Affiliation(s)
- Qiao Yan
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Rui-Min Sun
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Ping Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
9
|
Sun RM, Yao YQ, Wang AJ, Fang KM, Zhang L, Feng JJ. One-step pyrolysis synthesis of nitrogen, manganese-codoped porous carbon encapsulated cobalt-iron nanoparticles with superior catalytic activity for oxygen reduction reaction. J Colloid Interface Sci 2021; 592:405-415. [PMID: 33706153 DOI: 10.1016/j.jcis.2021.02.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
Replacing precious metal catalysts with low-price and abundant catalysts is one of urgent goals for green and sustainable energy development. It is imperative yet challenging to search low-cost, high-efficiency, and long-durability electrocatalysts for oxygen reduction reaction (ORR) in energy conversion devices. Herein, three-dimensional low-cost Co3Fe7 nanoparticles/nitrogen, manganese-codoped porous carbon (Co3Fe7/N, Mn-PC) was synthesized with the mixture of dicyandiamide, cobalt (II) tetramethoxyphenylporphyrin (Co(II)TMOPP), hemin, and manganese acetate by one-step pyrolysis and then acid etching. The resultant Co3Fe7/N, Mn-PC exhibited excellent durability and prominent ORR activity with more positive onset potential (Eonset, 0.98 V) and half-wave potential (E1/2, 0.87 V) in 0.1 M KOH electrolyte, coupled with strong methanol resistance. The pyrolysis temperature and optimal balance of graphite with pyridine-nitrogen are of significance for the ORR performance. The prepared Co3Fe7/N, Mn-PC displayed excellent ORR performance over commercial Pt/C in the identical environment. It was ascribed to the uniform 3D architecture, Mn- and N-doping effects by finely adjusting the electronic structures, coupled with the synergistic catalytic effects of multi-compositions and multi-active sites. This work provides some constructive guidelines for preparation of low-cost and high-efficiency ORR electrocatalysts.
Collapse
Affiliation(s)
- Rui-Min Sun
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - You-Qiang Yao
- Institute of Advanced Manufacturing Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
N-doped graphene foam obtained by microwave-assisted exfoliation of graphite. Sci Rep 2021; 11:2044. [PMID: 33479478 PMCID: PMC7820460 DOI: 10.1038/s41598-021-81769-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
The synthesis of metal-free but electrochemically active electrode materials, which could be an important contributor to environmental protection, is the key motivation for this research approach. The progress of graphene material science in recent decades has contributed to the further development of nanotechnology and material engineering. Due to the unique properties of graphene materials, they have found many practical applications: among others, as catalysts in metal-air batteries, supercapacitors, or fuel cells. In order to create an economical and efficient material for energy production and storage applications, researchers focused on the introduction of additional heteroatoms to the graphene structure. As solutions for functionalizing pristine graphene structures are very difficult to implement, this article presents a facile method of preparing nitrogen-doped graphene foam in a microwave reactor. The influence of solvent type and microwave reactor holding time was investigated. To characterize the elemental content and structural properties of the obtained N-doped graphene materials, methods such as elemental analysis, high-resolution transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy were used. Electrochemical activity in ORR of the obtained materials was tested using cyclic voltamperometry (CV) and linear sweep voltamperometry (LSV). The tests proved the materials’ high activity towards ORR, with the number of electrons reaching 3.46 for tested non-Pt materials, while the analogous value for the C-Pt (20 wt% loading) reference was 4.
Collapse
|
11
|
Chen K, Kim S, Rajendiran R, Prabakar K, Li G, Shi Z, Jeong C, Kang J, Li OL. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J Colloid Interface Sci 2021; 582:977-990. [DOI: 10.1016/j.jcis.2020.08.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023]
|
12
|
Duan JJ, Zhang RL, Feng JJ, Zhang L, Zhang QL, Wang AJ. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J Colloid Interface Sci 2021; 581:774-782. [DOI: 10.1016/j.jcis.2020.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
|
13
|
Fan B, Zhao D, Zhou W, Xu W, Liang X, He G, Wu Z, Li L. Nitrogen‐Doped Hollow Carbon Polyhedrons with Carbon Nanotubes Surface Layers as Effective Sulfur Hosts for High‐Rate, Long‐Lifespan Lithium–Sulfur Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Fan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou 510006 China
| | - Dengke Zhao
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou 510006 China
| | - Wei Zhou
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou 510006 China
| | - Wei Xu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou 510006 China
| | - Xinghua Liang
- Guangxi Key Laboratory of Automobile Components and Vehicle Technology Guangxi University of Science and Technology Liuzhou 545600 China
| | - Guoqiang He
- State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials School of Resources Environment and Materials Guangxi University 100 Daxue Road Nanning, Guangxi 530004 China
| | - Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science & Technology 53 Zheng-zhou Road 266042 Qingdao China
| | - Ligui Li
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials New Energy Research Institute School of Environment and Energy South China University of Technology Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control Guangdong University of Petrochemical Technology Maoming 525000 China
- Guangdong Provincial Key Laboratory of Advance Energy Storage Materials South China University of Technology Guangzhou 510640 China
| |
Collapse
|
14
|
Cao QC, Ding XB, Li F, Qin YH, Wang C. Zinc, sulfur and nitrogen co-doped carbon from sodium chloride/zinc chloride-assisted pyrolysis of thiourea/sucrose for highly efficient oxygen reduction reaction in both acidic and alkaline media. J Colloid Interface Sci 2020; 576:139-146. [PMID: 32413778 DOI: 10.1016/j.jcis.2020.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Zn and N co-doped carbon (Zn-N-C) shows encouraging catalytic stability for oxygen reduction reaction (ORR) because of the fulfilled d orbital of Zn, but its catalytic activity is not satisfactory. Herein, hierarchically porous Zn, S and N co-doped carbon (Zn-S-N-C) with large specific surface area (2433 m2 g-1) and pore volume (3.007 cm3 g-1) is synthesized by using NaCl/ZnCl2-assisted pyrolysis of sucrose and thiourea. The Zn-S-N-C catalyst exhibits superior ORR activity with half-wave potentials (E1/2) up to 0.774 V in 0.1 M HClO4 and 0.894 V in 0.1 M KOH, good ORR stability with 19- and 4-mV loss in E1/2 values after 10,000 potential cycles in 0.1 M HClO4 and 0.1 M KOH, respectively, and excellent methanol tolerance. The good ORR performance of Zn-S-N-C can be attributed to its enhanced intrinsic ORR activity resulting from the formation of S, N doped carbon and ZnS in Zn-S-N-C, its hierarchically porous structure resulting from the pore-forming roles played by ZnCl2, NaCl and thiourea, and its improved graphitization degree resulting from the added ZnCl2 during Zn-S-N-C synthesis. This work will provide a novel strategy for the synthesis of hierarchically porous Zn, S and N co-doped carbon materials for ORR.
Collapse
Affiliation(s)
- Qing-Cheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiao-Bo Ding
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Li
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuan-Hang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Cunwen Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
15
|
Xiao Y, Liu W, Zhang Z, Liu J. Controllable synthesis for highly dispersed ruthenium clusters confined in nitrogen doped carbon for efficient hydrogen evolution. J Colloid Interface Sci 2020; 571:205-212. [DOI: 10.1016/j.jcis.2020.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
16
|
A novel cobalt and nitrogen co-doped mesoporous hollow carbon hemisphere as high-efficient electrocatalysts for oxygen reduction reaction. J Colloid Interface Sci 2020; 579:12-20. [PMID: 32570026 DOI: 10.1016/j.jcis.2020.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
Exploring a cheap catalyst with effective activity for oxygen reduction reaction (ORR) to replace precious metal electrocatalysts has gained tremendous attention for several decades. In this study, we designed and synthesized cobalt and nitrogen supported on mesoporous hollow carbon hemisphere (Co/N/HCHs) nanocomposites by a facile and economical approach. Semisphere-shaped mesoporous hollow carbon is self-generated using silica particles as template, followed by a pyrolysis-etching process; and exhibits high electrical conductivity and high specific surface. The unique porous structure of carbon provides significant number of the abundant defective sites and shortens the mass transfer pathway, leading to a greatly enhanced electrocatalytic activity with mainly 4e- reduction. Moreover, the synergistic effects of large electrochemically active areas and good electrical conductivity, resulting from the introduction of Co and N heteroatom, are the main reason for displaying outstanding ORR activity with a high half-wave potential of 0.8 V and the electron transfer numbers of 3.89. Furthermore, an excellent long-term stability (the current density retention of 87.0%) and superb methanol tolerance in alkaline medium are achieved. Undoubtedly, this demonstrates a potential way to strategically design the non-precious metal doped carbon catalysts for wider practical applications.
Collapse
|
17
|
Wen GL, Niu HJ, Feng JJ, Luo X, Weng X, Wang AJ. Well-dispersed Co3Fe7 alloy nanoparticles wrapped in N-doped defect-rich carbon nanosheets as a highly efficient and methanol-resistant catalyst for oxygen-reduction reaction. J Colloid Interface Sci 2020; 569:277-285. [DOI: 10.1016/j.jcis.2020.02.089] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
|
18
|
Cao H, Cao J, Wang F, Zhu H, Pu M. A mesoporous carbon-based catalyst derived from cobalt and boron co-doped melamine formaldehyde gel for oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Wei S, Zhang F, Chen Z, Ding J, Xue B, Lu C. Porous carbons embedded with nitrogen-coordinated cobalt as an exceptional electrochemical catalyst for high-performance Zn–air batteries. NEW J CHEM 2020. [DOI: 10.1039/d0nj02933e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Establish a polymer framework coordination transition metal strategy to fabricate Co/N-PCs for energy conversion and storage.
Collapse
Affiliation(s)
- Shice Wei
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhenying Chen
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Junjie Ding
- Key Lab for Advanced Materials, Institute of Applied Chemistry
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Bai Xue
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Chenbao Lu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
20
|
Chen XL, Ma LS, Su WY, Ding LF, Zhu HB, Yang H. ZIF-derived bifunctional Cu@Cu–N–C composite electrocatalysts towards efficient electroreduction of oxygen and carbon dioxide. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135273] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|