1
|
Li Y, Li L, Du F. Amorphous S-doped NixCo3-xO4 for high-performance asymmetric supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Wu Y, Wang Z, Zhu L, Xiao K, Yin Y, Wang W. Preparation of Cu
3
(
BTC
)
2
/
PVC
mixed matrix membrane for pomegranate seed storage. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanyue Wu
- College of Food Science and Engineering, South China University of Technology Guangzhou China
| | - Zhen Wang
- College of Food Science and Engineering, South China University of Technology Guangzhou China
| | - Liang Zhu
- College of Food Science and Engineering, South China University of Technology Guangzhou China
| | - Kaijun Xiao
- College of Food Science and Engineering, South China University of Technology Guangzhou China
| | - Yurong Yin
- College of Environment and Energy, South China University of Technology Guangzhou China
| | - Wenxia Wang
- College of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou China
| |
Collapse
|
3
|
Yin X, Li H, Han L, Meng J, Lu J, Song Q. All Si 3 N 4 Nanowires Membrane Based High-Performance Flexible Solid-State Asymmetric Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008056. [PMID: 33763960 DOI: 10.1002/smll.202008056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much attention has been drawn in the development of flexible energy storage devices due to the increasing demands for flexible/portable electronic devices with high energy density, low weight, and good flexibility. Herein, vertically oriented graphene nanosheets (VGNs) are in situ fabricated on the surface of free-standing and flexible Si3 N4 nanowires (NWs) membrane by plasma-enhanced chemical vapor deposition (PECVD), which are directly used as flexible nanoscale conductive substrates. NiCo2 O4 hollow nanospheres (HSs) and FeOOH amorphous nanorods (NRs) are finally prepared on Si3 N4NWs @VGNs, which are served as the positive and negative electrodes, respectively. Profiting from the structural merits, the synthesized Si3 N4NWs @VGNs@NiCo2 O4HSs and Si3 N4NWs @VGNs@FeOOHNRs membrane electrodes exhibit remarkable electrochemical performance. Using Si3 N4NWs membrane as the separator, the assembled all Si3 N4NWs membrane-based flexible solid-state asymmetric supercapacitor (ASC) with a wide operating potential window of 1.8 V yields the outstanding energy density of 96.3 Wh kg-1 , excellent cycling performance (91.7% after 6000 cycles), and good mechanical flexibility. More importantly, this work provides a rational design strategy for the preparation of flexible electrode materials and broadens the applications of Si3 N4NWs in the field of energy storage.
Collapse
Affiliation(s)
- Xuemin Yin
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hejun Li
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liyuan Han
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiachen Meng
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jinhua Lu
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiang Song
- State Key Laboratory of Solidification Processing, Shaanxi Province Key Laboratory of Fiber Reinforced Light Composite Materials, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Yin X, Li H, Yuan R, Lu J. Hierarchical self-supporting sugar gourd-shape MOF-derived NiCo2O4 hollow nanocages@SiC nanowires for high-performance flexible hybrid supercapacitors. J Colloid Interface Sci 2021; 586:219-232. [DOI: 10.1016/j.jcis.2020.10.086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
|
5
|
Sun P, Wang L, Zhang J, Huang J, Wang P, Hou J, Zhang J, Li C, Yao Z, Yang Y, Xiong J. Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Zhang G, Xuan H, Wang R, Guan Y, Li H, Liang X, Han P, Wu Y. Enhanced supercapacitive performance in Ni3S2/MnS composites via an ion-exchange process for supercapacitor applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136517] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|