1
|
Sugahara T, Ichihashi H, Tsumura K, Hara T, Miyazaki A, Sakai T. Aggregation Characteristics of Biobased Anionic Surfactant, Hydroxy Alkane Sulfonate in Aqueous CaCl 2 Solutions: Vesicle and Supported Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21719-21727. [PMID: 39347654 DOI: 10.1021/acs.langmuir.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vesicles are known to spontaneously adsorb onto solid-liquid interfaces and to form supported bilayers in aqueous solution. Cationic surfactants have typically been used to generate supported bilayers because solid surfaces in water are often negatively charged. The present study investigated the aggregation behavior of an anionic surfactant, hydroxy alkane sulfonate having a C18 alkyl chain (C18HAS) in aqueous CaCl2 solutions. These assessments were performed by acquiring data related to equilibrium surface tension, the solubilization of an oil-soluble dye, UV-visible transmittance, pyrene fluorescence and dynamic light scattering together with freeze-fracture transmission electron microscopy observations. The results suggest that C18HAS can form vesicles in aqueous CaCl2 solutions under certain surfactant concentrations. Specifically, this aggregation behavior is greatly affected by C18HAS/CaCl2 molar ratio. At the C18HAS/CaCl2 molar ratio is less than an equivalence point (that is, less than 2:1), phase separation occurs with the formation of a vesicle above solubility limit of the C18HAS Ca salt. On the other hand, in the case that the C18HAS/CaCl2 molar ratio is above an equivalence point (that is, above 2:1), the Na salt of C18HAS forms micelles above the critical micelle concentration (cmc), causing solubilization of vesicles. Analyses by high-speed atomic force microscopy demonstrated that the C18HAS vesicles can spontaneously form a supported bilayer on a negatively charged mica surfaces, similar to the behavior of cationic surfactant vesicles, even though C18HAS is an anionic surfactant. These results suggest that C18HAS could serve as a detergent component but also as a surface modifier when the C18HAS/CaCl2 molar ratio is optimized.
Collapse
Affiliation(s)
- Tadashi Sugahara
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Haruna Ichihashi
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Kana Tsumura
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Teruyuki Hara
- Analytical Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Atsushi Miyazaki
- Material Science Research, Kao Corporation, 1334 Minato, Wakayama-shi, Wakayama 640-8580, Japan
| | - Takaya Sakai
- R&D, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan
| |
Collapse
|
2
|
Wang Y, Qin D, Jiang S. Adsorption Behavior of Different Components of a Polymer/Surfactant Composite Control System along an Injection-Production Channel in Sand Conglomerate Reservoirs. ACS OMEGA 2024; 9:40665-40675. [PMID: 39371979 PMCID: PMC11447724 DOI: 10.1021/acsomega.4c04906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Sandy conglomerate reservoirs have become an important replacement area for unconventional energy to increase reserves and production. The polymer/surfactant composite control flooding system can effectively alleviate the water flooding front breakthrough caused by the interlayer or plane heterogeneity of the sand conglomerate reservoir and is an effective production method to reduce the water cutoff of the well and increase the oil recovery. In the process of controlling the oil displacement process of the system, the chromatographic separation effect was found due to the different viscosities of each component and the adsorption difference between the components and the rock, which weakened the development effect of the reservoir. It is necessary to study the adsorption law of each component of the complex controlled displacement system along the injection-production channel in the sand conglomerate reservoir. In this study, the microstructure and mineral composition of sandy conglomerates were determined by scanning electron microscopy and X-ray diffraction tests. The main particle size distribution was counted through a rock particle sieving experiment. A new characterization method called the large-size core physical model was used. The composite control system of sulfonate and betaine was used as the surfactant component, and the adsorption degree of each component in the displacement process was analyzed. The experimental results showed that the mass fraction of the sandy conglomerate increased with the decrease in particle size. The particles with a size of less than 0.08 mm account for a relatively high proportion, with a mass fraction of 60%. The content of brittle minerals, such as quartz and feldspar, in the glutenite was relatively high, and micrometer-sized pores and fractures were developed. The main factors affecting the viscosity of the composite system were the concentration and molecular weight of the polymer. The increase of injection volume of the flooding system is conducive to the maintenance of ultralow interfacial tension migration to the deep core. In the displacement process, when the polymer molecular chain was cut to a certain extent, the effect of throat shear was also slowed due to the short molecular chain. However, the shortened polymer molecules were more easily adsorbed on the surface of rock particles and the adsorption rate increased. The adsorption capacity of each component gradually decreased with the increase of the injection volume and injection concentration. The relative content of the composite control system and crude oil affects the type of emulsion, which undergoes a corresponding transformation during the driving process from a water-in-oil emulsion to an oil-in-water one. The research results of this paper enrich the mechanism of enhancing oil recovery of sand conglomerate reservoirs by polymer-surfactant composite regulation technology.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key
Laboratory of Enhanced Oil & Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, P. R. China
| | - Dapeng Qin
- No.6
Oil Production Plant, PetroChina Changqing
Oilfield Company, Xi’an 710018, China
| | - Shengdong Jiang
- College
of Chemistry Chemical Engineering, Daqing
Normal University, Daqing 163111, China
| |
Collapse
|
3
|
Chen Y, Petkov JT, Ma K, Li P, R P Webster J, Penfold J, Thomas RK, Allgaier J, Dalgliesh R, Smith G. Manipulating the hydrophilic / hydrophobic balance in novel cationic surfactants by ethoxylation: The impact on adsorption and self-assembly. J Colloid Interface Sci 2024; 674:405-415. [PMID: 38941934 DOI: 10.1016/j.jcis.2024.06.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
HYPOTHESIS Cationic surfactants have a wide range of applications, often associated with their affinity for a range of solid surfaces and their anti-microbial properties. Manipulating their adsorption and self-assembly properties is key to most applications, and this is commonly achieved through surfactant mixtures or manipulating their headgroup or alkyl chain structure. Achieving this through adjustments to their headgroup structure is less common in cationic surfactants than in anionic surfactants. Ethoxylation provides the ability to adjust the hydrophilic / hydrophobic balance, as extensively demonstrated in a range of anionic surfactants. EXPERIMENTS This same approach has been applied here to a range of ethoxylated cationic surfactants in the form of the quaternary ammonium salts, and their tertiary nonionic equivalents before quaternisation. Their adsorption and self-assembly properties are investigated using predominantly the neutron scattering techniques of neutron reflectivity, NR, and small angle neutron scattering, SANS. FINDINGS The trends in the adsorption at the air-water interface and the self-assembly in aqueous solution demonstrate how the hydrophilic / hydrophobic balance can be adjusted by varying the degree of ethoxylation and the alkyl chain length, and illustrate the degree of interdependence of the different structural changes. The variation in the adsorption and the micelle structure shows how the surfactant conformation / packing changes as the degree of ethoxylation and alkyl chain length increases and how the introduction of charge induces further changes.
Collapse
Affiliation(s)
- Y Chen
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - J T Petkov
- Arxada, Muenchensteinerstrasse 38, CH-4002 Basel, Switzerland
| | - K Ma
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - P Li
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK.
| | - J R P Webster
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - J Penfold
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK; Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OXON, UK.
| | - R K Thomas
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OXON, UK
| | - J Allgaier
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information Processing (IBI-8), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - R Dalgliesh
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| | - G Smith
- ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Didcot, OXON, UK
| |
Collapse
|
4
|
Cheng Y, Zhang S, Wang J, Zhao Y, Zhang Z. Research progress in the synthesis and application of surfactants based on trisiloxane. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Arya S, Patidar R, Ray D, Aswal VK, Ranjan N, Bahadur P, Tiwari S. Structural transitions in TPGS micelles induced by trehalose as a model cryoprotectant. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Strong synergistic interactions in zwitterionic-anionic surfactant mixtures at the air-water interface and in micelles: The role of steric and electrostatic interactions. J Colloid Interface Sci 2022; 613:297-310. [PMID: 35042030 DOI: 10.1016/j.jcis.2022.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The milder interaction with biosystems makes the zwitterionic surfactants an important class of surfactants, and they are widely used in biological applications and in personal care formulations. An important aspect of those applications is their strong synergistic interaction with anionic surfactants. It is anticipated that the strong interaction will significantly affect the adsorption and self-assembly properties. EXPERIMENTS Surface tension, ST, neutron reflectivity, NR, and small angle neutron scattering, SANS, have been used here to explore the synergistic mixing in micelles and at the air-water interface for the zwitterionic surfactant, dodecyldimethylammonium propanesulfonate, C12SB, and the anionic surfactants, alkyl ester sulfonate, AES, in the absence and presence of electrolyte, 0.1 M NaCl. FINDINGS At the air-water interface the asymmetry of composition in the strong synergistic interaction and the changes with added electrolyte and anionic surfactant structure reflect the relative contributions of the electrostatic and steric interactions to the excess free energy of mixing. In the mixed micelles the synergy is less pronounced and indicates less severe packing constraints. The micelle structure is predominantly globular to elongated, and shows a pronounced micellar growth with composition which depends strongly upon the nature of the anionic surfactant and the addition of electrolyte.
Collapse
|
7
|
Rathod S, Patidar R, Ray D, Aswal VK, Shah SA, Ranjan N, Bahadur P, Tiwari S. Monosaccharide-induced growth and higher order transitions in TPGS micelles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Structural aspects of a self-emulsifying multifunctional amphiphilic excipient: Part II. The case of Cremophor EL. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Jadhav SR, Bryant G, Mata JP, Ife A, Eldridge DS, Palombo EA, Harding IH, Shah RM. Structural aspects of a self-emulsifying multifunctional amphiphilic excipient: Part I. The case of Gelucire® 44/14. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Danov KD, Stanimirova RD, Kralchevsky PA, Slavova TG, Yavrukova VI, Ung YW, Tan E, Xu H, Petkov JT. Solubility of ionic surfactants below their Krafft point in mixed micellar solutions: Phase diagrams for methyl ester sulfonates and nonionic cosurfactants. J Colloid Interface Sci 2021; 601:474-485. [PMID: 34090025 DOI: 10.1016/j.jcis.2021.05.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Many ionic surfactants with wide applications in personal-care and house-hold detergency show limited water solubility at lower temperatures (Krafft point). This drawback can be overcome by using mixed solutions, where the ionic surfactant is incorporated in mixed micelles with another surfactant, which is soluble at lower temperatures. EXPERIMENTS The solubility and electrolytic conductivity for a binary surfactant mixture of anionic methyl ester sulfonates (MES) with nonionic alkyl polyglucoside and alkyl polyoxyethylene ether at 5 °C during long-term storage were measured. Phase diagrams were established; a general theoretical model for their explanation was developed and checked experimentally. FINDINGS The binary and ternary phase diagrams for studied surfactant mixtures include phase domains: mixed micelles; micelles + crystallites; crystallites, and molecular solution. The proposed general methodology, which utilizes the equations of molecular thermodynamics at minimum number of experimental measurements, is convenient for construction of such phase diagrams. The results could increase the range of applicability of MES-surfactants with relatively high Krafft temperature, but with various useful properties such as excellent biodegradability and skin compatibility; stability in hard water; good wetting and cleaning performance.
Collapse
Affiliation(s)
- Krassimir D Danov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria.
| | - Rumyana D Stanimirova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Peter A Kralchevsky
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Tatiana G Slavova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Veronika I Yavrukova
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Yee Wei Ung
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor Dalur Ehsan, Malaysia
| | - Emily Tan
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor Dalur Ehsan, Malaysia
| | - Hui Xu
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor Dalur Ehsan, Malaysia
| | - Jordan T Petkov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry & Pharmacy, Sofia University, 1164 Sofia, Bulgaria; Biological Physics, School of Physics and Astronomy, The University of Manchester, Schuster Building, Oxford Road, M13 9PL, UK
| |
Collapse
|
11
|
Hu X, Gong H, Hollowell P, Liao M, Li Z, Ruane S, Liu H, Pambou E, Mahmoudi N, Dalgliesh RM, Padia F, Bell G, Lu JR. What happens when pesticides are solubilised in binary ionic/zwitterionic-nonionic mixed micelles? J Colloid Interface Sci 2021; 586:190-199. [PMID: 33162043 DOI: 10.1016/j.jcis.2020.10.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Surfactants have been widely used as adjuvants in agri-sprays to enhance the solubility of pesticides in foliar spray deposits and their mobility through leaf cuticles. Previously, we have characterised pesticide solubilisation in nonionic surfactant micelles, but what happens when pesticides become solubilised in anionic, cationic and zwitterionic and their mixtures with nonionic surfactants remain poorly characterised. EXPERIMENTS To facilitate characterisations by SANS and NMR, we used nonionic surfactant hexaethylene glycol monododecyl ether (C12E6), anionic sodium dodecylsulphate (SDS), cationic dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecylphosphocholine (C12PC) as model adjuvant systems to solubilise 3 pesticides, Cyprodinil (CP), Azoxystrobin (AZ) and Difenoconazole (DF), representing different structural features. The investigation focused on the influence of solubilisates in driving changes to the micellar nanostructures in the absence or presence of electrolytes. NMR and NOESY were applied to investigate the solubility and location of each pesticide in the micelles. SANS was used to reveal subtle changes to the micellar structures due to pesticide solubilisation with and without electrolytes. FINDINGS Unlike nonionic surfactants, the ionic and zwitterionic surfactant micellar structures remain unchanged upon pesticide solubilisation. Electrolytes slightly elongate the ionic surfactant micelles but have no effect on nonionic and zwitterionic surfactants. Pesticide solubilisation could alter the structures of the binary mixtures of ionic/zwitterionic and ionic/nonionic micelles by causing elongation, shell shrinkage and dehydration, with the exact alteration being determined by the molar ratio in the mixture.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Peter Hollowell
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sean Ruane
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Elias Pambou
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Najet Mahmoudi
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | | | - Faheem Padia
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Gordon Bell
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
12
|
Wang Z, Li P, Ma K, Chen Y, Yan Z, Penfold J, Thomas RK, Campana M, Webster JR, Li Z, Neil JH, Xu H, Petkov J, Roberts DW. α-Sulfo alkyl ester surfactants: Impact of changing the alkyl chain length on the adsorption, mixing properties and response to electrolytes of the tetradecanoate. J Colloid Interface Sci 2021; 586:876-890. [DOI: 10.1016/j.jcis.2020.10.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
|
13
|
Liu H, Hu X, Li Z, Fa K, Gong H, Ma K, Liao M, Li P, Webster JRP, Petkov JT, Thomas RK, Ren Lu J. Surface adsorption and solution aggregation of a novel lauroyl-l-carnitine surfactant. J Colloid Interface Sci 2021; 591:106-114. [PMID: 33592522 DOI: 10.1016/j.jcis.2021.01.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS l-carnitine plays a crucial role in the cellular production of energy by transporting fatty acids into mitochondria. Acylated l-carnitines are amphiphilic and if appropriate physical properties were demonstrated, they could replace many currently used surfactants with improved biocompatibility and health benefits. EXPERIMENTS This work evaluated the surface adsorption of lauroyl-l-carnitine (C12LC) and its aggregation behavior. The size and shape of the aggregates of C12LC surfactant were studied at different temperatures, concentrations, pH and ionic strength by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Surface tension measurements were carried out to determine the critical micellar concentration (CMC) of C12LC. Combining with the Gibbs equation, the surface excess at different concentrations could be determined. Neutron reflection (NR) was used to determine the structure of the adsorbed layer at the air/water interface with the help of isotopic contrast variations. FINDINGS At pH 7, the limiting area per molecule (ACMC) of the zwitterionic C12LC adsorbed layer at the air/water interface was found to be 46 Å2 from surface tension and neutron reflection, smaller than the values of C12PC, C12E5, DTAB, C12C4betaine and C12C8betaine but close to that of SDS. A pronounced surface tension minimum at pH 2 at the low ionic strength was linked to a minimum value of area per molecule of about 30 Å2, indicating the competitive adsorption from traces of lauric acid produced by hydrolysis of C12LC. As the concentration increased, area per molecule reached a plateau of 37-39 Å2, indicating the dissolution of the more surface-active lauric acid into the micelles of C12LC. DLS and SANS showed that the size and shape of micelles had little response to temperature, concentration, ionic strength or pH. The SANS profiles measured under 3 isotopic contrasts could be well fitted by the core-shell model, giving a spherical core radius of 15.7 Å and a shell thickness of 10.5 Å. The decrease of pH led to more protonated carboxyl groups and more positively charged micelles, but the micellar structures remained unchanged, in spite of their stronger interaction. These features make C12LC potentially attractive as a solubilizing agent.
Collapse
Affiliation(s)
- Huayang Liu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Fa
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kun Ma
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Mingrui Liao
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Peixun Li
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - John R P Webster
- ISIS Neutron Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Jordan T Petkov
- Arch UK Biocides Ltd, Lonza, Hexagon Tower, Delaunays Road, Blackley, Manchester M9 8ZS, UK
| | - Robert K Thomas
- Physical and Theoretical Chemistry, University of Oxford, South Parks, Oxford OX1 3QZ, UK
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
14
|
Yavrukova VI, Shandurkov DN, Marinova KG, Kralchevsky PA, Ung YW, Petkov JT. Cleaning Ability of Mixed Solutions of Sulfonated Fatty Acid Methyl Esters. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Veronika I. Yavrukova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and PharmacySofia University Sofia 1164 Bulgaria
| | - Dimitar N. Shandurkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and PharmacySofia University Sofia 1164 Bulgaria
| | - Krastanka G. Marinova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and PharmacySofia University Sofia 1164 Bulgaria
| | - Peter A. Kralchevsky
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and PharmacySofia University Sofia 1164 Bulgaria
| | - Yee W. Ung
- KLK OLEO, KL‐Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara Petaling Jaya 47810 Selangor Dalur Ehsan Malaysia
| | - Jordan T. Petkov
- KLK OLEO, KL‐Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara Petaling Jaya 47810 Selangor Dalur Ehsan Malaysia
| |
Collapse
|
15
|
Li P, Wang Z, Ma K, Chen Y, Yan Z, Penfold J, Thomas RK, Campana M, Webster JR, Washington A. Multivalent electrolyte induced surface ordering and solution self-assembly in anionic surfactant mixtures: Sodium dodecyl sulfate and sodium diethylene glycol monododecyl sulfate. J Colloid Interface Sci 2020; 565:567-581. [DOI: 10.1016/j.jcis.2020.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
|
16
|
Dasgupta M, Judy E, Kishore N. Partitioning of anticancer drug 5-fluorouracil in micellar media explored by physicochemical properties and energetics of interactions: Quantitative insights for implications in drug delivery. Colloids Surf B Biointerfaces 2020; 187:110730. [DOI: 10.1016/j.colsurfb.2019.110730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022]
|
17
|
Yavrukova VI, Radulova GM, Danov KD, Kralchevsky PA, Xu H, Ung YW, Petkov JT. Rheology of mixed solutions of sulfonated methyl esters and betaine in relation to the growth of giant micelles and shampoo applications. Adv Colloid Interface Sci 2020; 275:102062. [PMID: 31718784 DOI: 10.1016/j.cis.2019.102062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 11/15/2022]
Abstract
This is a review article on the rheological properties of mixed solutions of sulfonated methyl esters (SME) and cocamidopropyl betaine (CAPB), which are related to the synergistic growth of giant micelles. Effects of additives, such as fatty alcohols, cocamide monoethanolamine (CMEA) and salt, which are expected to boost the growth of wormlike micelles, are studied. We report and systematize the most significant observed effects with an emphasis on the interpretation at molecular level and understanding the rheological behavior of these systems. The experiments show that the mixing of SME and CAPB produces a significant rise of viscosity, which is greater than in the mixed solutions of sodium dodecyl sulfate and CAPB. The addition of fatty alcohols, CMEA and cationic polymer, leads to broadening of the synergistic peak in viscosity without any pronounced effect on its height. The addition of NaCl leads to a typical salt curve with high maximum, but in the presence of dodecanol this maximum is much lower. At lower salt concentrations, the fatty alcohol acts as a thickener, whereas at higher salt concentrations - as a thinning agent. Depending on the shape of the frequency dependences of the measured storage and loss moduli, G' and G", the investigated micellar solutions behave as systems of standard or nonstandard rheological behavior. The systems with standard behavior obey the Maxwell viscoelastic model (at least) up to the crossover point (G' = G") and can be analyzed in terms of the Cates reptation-reaction model. The systems with nonstandard rheological behavior obey the Maxwell model only in a restricted domain below the crossover frequency; they can be analyzed in the framework of an augmented version of the Maxwell model. The methodology for data analysis and interpretation could be applied to any other viscoelastic micellar system.
Collapse
Affiliation(s)
- Veronika I Yavrukova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Gergana M Radulova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Krassimir D Danov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria
| | - Peter A Kralchevsky
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria.
| | - Hui Xu
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor, Dalur Ehsan, Malaysia
| | - Yee Wei Ung
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor, Dalur Ehsan, Malaysia
| | - Jordan T Petkov
- KLK OLEO, KL-Kepong Oleomas Sdn Bhd, Menara KLK, Jalan PJU 7/6, Mutiara Damansara, 47810 Petaling Jaya, Selangor, Dalur Ehsan, Malaysia
| |
Collapse
|