1
|
Sun F, Yue C, Wang J, Liu Y, Bao W, Liu N, Tuo Y, Lu Y. Lacunary polyoxometalate oriented construction of dispersed Ni 3S 2 confined in WO 3 for electrocatalytic water splitting. J Colloid Interface Sci 2023; 645:188-199. [PMID: 37148684 DOI: 10.1016/j.jcis.2023.04.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Manufacturing low-cost, high-performance and earth-rich catalysts for hydrogen evolution (HER) and oxygen evolution reactions (OER) is critical to achieving sustainable green hydrogen production. Herein, we utilize lacunary Keggin-structure [PW9O34]9- (PW9) as a molecular pre-assembly platform to anchor Ni within a single PW9 molecule by vacancy-directed and nucleophile-induced effects for the uniform dispersion of Ni at the atomic level. The chemical coordination of Ni with PW9 can avoid the aggregation of Ni and favor the exposure of active sites. The Ni3S2 confined by WO3 prepared from controlled sulfidation of Ni6PW9/Nickel Foam (Ni6PW9/NF) exhibited excellent catalytic activity in both 0.5 M H2SO4 and 1 M KOH solutions, which required only 86 mV and 107 mV overpotentials for HER at a current density of 10 mA∙cm-2 and 370 mV for OER at 200 mA∙cm-2. This is attributed to the good dispersion of Ni at the atomic level induced by trivacant PW9 and the enhanced intrinsic activity by synergistic effect of Ni and W. Therefore, the construction of active phase from the atomic level is insightful to the rational design of dispersed and efficient electrolytic catalysts.
Collapse
Affiliation(s)
- Fengyue Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Changle Yue
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Jinjin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Wenjing Bao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Na Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Yongxiao Tuo
- College of New Energy, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
2
|
Sandwich-like superstructure of in-situ self-assembled hetero-structured carbon nanocomposite for improving electrocatalytic oxygen reduction. J Colloid Interface Sci 2022; 616:34-43. [DOI: 10.1016/j.jcis.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
|
3
|
Chen Q, Nie Y, Ming M, Fan G, Zhang Y, Hu JS. Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63652-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution. J Colloid Interface Sci 2020; 564:77-87. [DOI: 10.1016/j.jcis.2019.12.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
|
5
|
He M, Zhu L, Liu Y, Wen H, Hu Y, Li B. Interfacial effect of Co4S3–Co9S8 nanoparticles hosted on rGO sheets derived from molecular precursor pyrolysis on enhancing electrochemical behaviour. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00564a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co4S3–Co9S8 nanoparticles with abundant interfaces hosted on reduced graphene oxide were synthesized via a monomolecular pyrolysis strategy to boost catalytic activity.
Collapse
Affiliation(s)
- Mengmeng He
- Research Center of Green Catalysis
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Linchao Zhu
- College of Chemical and Environmental Science
- Yili Normal University
- Yining 835000
- P. R. China
| | - Yanyan Liu
- Institute of Chemical Industry of Forest Products
- Nanjing 210042
- P. R. China
| | - Hao Wen
- Research Center of Green Catalysis
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yunxia Hu
- College of Chemical and Environmental Science
- Yili Normal University
- Yining 835000
- P. R. China
| | - Baojun Li
- Research Center of Green Catalysis
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|