1
|
Liang H, Wu J, Wang J, Yang Z. Stabilizing Zn anode for high-performance Zn-Ni battery through a complexing agent electrolyte addition. J Colloid Interface Sci 2024; 661:730-739. [PMID: 38325171 DOI: 10.1016/j.jcis.2024.01.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Zn-Ni batteries have garnered considerable attention due to their high specific energy, consistent discharge voltage, favorable performance at low temperatures, and environmentally benign nature. Nevertheless, anode interface issues such as dendrite growth, hydrogen evolution, and interfacial side reactions lead to poor cycling stability of Zn-Ni batteries, significantly limiting their further commercial applications. In this study, we propose a facile electrolyte engineering strategy to optimize the Zn anode interfacial environment and stabilize the Zn anode by introducing tannic acid (TA) into the KOH electrolyte. The incorporated TA complexing agent addition will be used to prevent the direct contact of H2O with the anode surface and promote the desolvation of Zn2+ through complexation, thus suppressing the interfacial corrosion. Consequently, the Zn symmetric battery using TA electrolyte cycles stably for 178 h at 1 mA cm-2. The Zn-Ni full batteries with TA electrolyte maintain 98.08 % capacity retention after 2000 cycles at 20C. This study will be of immediate benefit in commercializing large-scale, practical energy storage applications.
Collapse
Affiliation(s)
- Hanhao Liang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha 410083, China
| | - Jian Wu
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha 410083, China
| | - Jianglin Wang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha 410083, China
| | - Zhanhong Yang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Liang H, Wu J, Xu J, Li J, Wang J, Cai J, Long Y, Yu X, Yang Z. Inert Group-Containing Electrolyte Additive Enabling Stable Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307322. [PMID: 38032169 DOI: 10.1002/smll.202307322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Aqueous zinc ion batteries (AZIBs) are considered promising energy storage devices because of their high theoretical energy density and cost-effectiveness. However, the ongoing side reactions and zinc dendrite growth during cycling limit their practical application. Herein, trisodium methylglycine diacetate (Na3MGDA) additive containing the additional inert group methyl is introduced for Zn anode protection, and the contribution of methyl as an inert group to the Zn anode stability is discussed. Experimental results reveal that the methyl group with various effects enhances the interaction between the polar groups in Na3MGDA and the Zn2+/Zn anode. Thus, the polar carboxylate negative ions in MGDA anions can more easily modify the solvation structure and adsorb on the anode surface in situ to establish a hydrophobic electrical double layer (EDL) layer with steric hindrance effects. Such the EDL layer exhibits a robust selectivity for Zn deposition and a significant inhibition of parasitic reactions. Consequently, the Zn||Zn symmetric battery presents 2375 h at 1 mA cm-2, 1 mAh cm-2, and the Zn||V6O13 full battery provides 91% capacity retention after 1300 cycles at 3 A g-1. This study emphasizes the significant role of inert groups of the additive on the interfacial stability during the plating/stripping of high-performance AZIBs.
Collapse
Affiliation(s)
- Hanhao Liang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jian Wu
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jiancheng Xu
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jiaming Li
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jianglin Wang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Jingbo Cai
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Yini Long
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Xiao Yu
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha, 410083, China
| | - Zhanhong Yang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
3
|
Zhu A, Ali S, Wang Z, Xu Y, Lin R, Jiao T, Ouyang Q, Chen Q. ZnO@Ag-Functionalized Paper-Based Microarray Chip for SERS Detection of Bacteria and Antibacterial and Photocatalytic Inactivation. Anal Chem 2023; 95:18415-18425. [PMID: 38060837 DOI: 10.1021/acs.analchem.3c03492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Bacterial infections caused by pathogenic microorganisms have become a serious, widespread health concern. Thus, it is essential and required to develop a multifunctional platform that can rapidly and accurately determine bacteria and effectively inhibit or inactivate pathogens. Herein, a microarray SERS chip was successfully synthesized using novel metal/semiconductor composites (ZnO@Ag)-ZnO nanoflowers (ZnO NFs) decorated with Ag nanoparticles (Ag NPs) arrayed on a paper-based chip as a supporting substrate for in situ monitoring and photocatalytic inactivation of pathogenic bacteria. Typical Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Vibrio parahemolyticus were selected as models. Partial least-squares discriminant analysis (PLS-DA) was performed to minimize the dimensionality of SERS spectra data sets and to develop a cost-effective identification model. The classification accuracy was 100, 97.2, and 100% for S. aureus, E. coli, and V. parahemolyticus, respectively. The antimicrobial activity of ZnO@Ag was proved by the microbroth dilution method, and the minimum inhibitory concentrations (MICs) of S. aureus, E. coli, and V. parahemolyticus were 40, 50, and 55 μg/mL, respectively. Meanwhile, it demonstrated remarkable photocatalytic performance under natural sunlight for the inactivation of pathogenic bacteria, and the inactivation rates for S. aureus, E. coli, and V. parahemolyticus were 100, 97.03 and 97.56%, respectively. As a result, the microarray chip not only detected the bacteria with high sensitivity but also confirmed the antibacterial and photocatalytic sterilization properties. Consequently, it offers highly prospective strategies for foodborne diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yi Xu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China
| | - Rongxi Lin
- Fujian Bama Tea Industry Co., Ltd., Quanzhou 362442, P. R. China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China
| |
Collapse
|
4
|
Li J, Mahdavi B, Baghayeri M, Rivandi B, Lotfi M, Mahdi Zangeneh M, Zangeneh A, Tayebee R. A new formulation of Ni/Zn bi-metallic nanocomposite and evaluation of its applications for pollution removal, photocatalytic, electrochemical sensing, and anti-breast cancer. ENVIRONMENTAL RESEARCH 2023; 233:116462. [PMID: 37352956 DOI: 10.1016/j.envres.2023.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nanocomposites have gained attention due to their variety of applications in different fields. In this research, we have reported a green synthesis of a bi-metallic nanocomposite of nickel and zinc using an aqueous extract of Citrus sinensis in the presence of chitosan (Ni/Zn@orange/chitosan). The nanocomposite was characterized using different techniques. We have examined various applications for Ni/Zn@orange/chitosan. The NPs were manufactured in spherical morphology with a particle range size of 17.34-90.51 nm. Ni/Zn@orange/chitosan showed an acceptable ability to remove dyes of Congo red and methyl orange from an aqueous solution after 80 min furthermore, it uptaking the drug mefenamic acid from a solution. Ni/Zn@orange/chitosan also exhibited great photocatalytic activity in synthesizing benzimidazole using benzyl alcohol and o-phenylenediamine. Ni/Zn@orange/chitosan was found as a potent electrochemical sensor to determine glucose. In the molecular and cellular section of the current research, the cells with composite nanoparticles were studied by MTT way about the anti-breast adenocarcinoma potentials malignant cell lines. The IC50 of composite nanoparticles were 320, 460, 328, 500, 325, 379, 350, and 396 μg/mL concering RBA, NMU, SK-BR-3, CAMA-1, MCF7, AU565, MDA-MB-468, and Hs 281.T breast adenocarcinoma cell lines, respectively. The results revealed the newly synthesized nanocomposite is a potent photocatalyst, dye pollution removal agent, and an acceptable new drug to treat breast cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, China.
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Behnaz Rivandi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Lotfi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Akram Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Tayebee
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
5
|
Ag modified ZnO nanoflowers for the dispersive micro-solid-phase extraction of lead(II) from food and water samples prior to its detection with high-resolution continuum source flame atomic absorption spectrometry. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Farah Hanis Nik Zaiman N, Shaari N. Review on flower-like structure nickel based catalyst in fuel cell application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Xu J, Yuan L, Yang Z, Liang H, Li S, Wang J. ZnO@SnO 2 Micron Flower as an Anode Material to Enhance the Cycling Performance of Zinc–Nickel Secondary Batteries. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiancheng Xu
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha 410083, China
| | - Liang Yuan
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha 410083, China
| | - Zhanhong Yang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hanhao Liang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha 410083, China
| | - Shandong Li
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Innovation Base of Energy and Chemical Materials for Graduate Students Training, Central South University, Changsha 410083, China
| | - Jianglin Wang
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Xia HY, Li BY, Zhao Y, Han YH, Wang SB, Chen AZ, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Li Z, Hu X, Kang J, Wang X, Kong L, Shi Z, Wang Z. Porous ZnO Nanosphere Inherently Encapsulated in Carbon Framework as a High-Performance Anode For Ni–Zn Secondary Batteries. Front Chem 2022; 10:936679. [PMID: 35844658 PMCID: PMC9280264 DOI: 10.3389/fchem.2022.936679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Nickel–zinc (Ni-Zn) secondary battery that is environmentally friendly and inexpensive has been regarded as a promising rechargeable battery system. However, the generation of deformation and dendrites of the traditional zinc anode during the cycling can cause capacity degradation and impede its practical application. Herein, we design a hierarchical ZnO nanosphere coated with an inherently derived ZIF-8 porous carbon shell (ZnO@CZIF-8) using a simple controllable method. The conductive carbon shell and porous ZnO core can provide more active sites, allow the fast transfer of electrons, and buffer the volume expansion of the electrode effectively. Benefiting from the synergistic effect amid the inherently ZIF-8–derived carbon shell and ZnO core, ZnO@CZIF-8 nanospheres exhibit a satisfying capacity of 316 mAh g−1 at a current density of 1 A g−1 after 50 cycles and an outstanding rate capacity when acting as the anode for a Ni-Zn secondary battery with merchant agglomerative Ni(OH)2 as the cathode. These results imply that the ZnO@CZIF-8 nanosphere is a hopeful anode for a high-energy Ni-Zn secondary battery.
Collapse
Affiliation(s)
- Zhuo Li
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, China
| | - Xianwei Hu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, China
- *Correspondence: Xianwei Hu,
| | - Jian Kang
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
| | - Xiaoli Wang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, China
| | - Lingyu Kong
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, China
| | - Zhongning Shi
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, China
| | - Zhaowen Wang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, China
| |
Collapse
|
10
|
The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00107-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Zhao W, Liu Z, Zhong C, Shen Z, Jin X, Zhang H. ZIF-derived ZnO/Sb composite scaffolded on carbon framework for Ni-Zn batteries. J Colloid Interface Sci 2020; 579:823-831. [PMID: 32679379 DOI: 10.1016/j.jcis.2020.06.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/28/2020] [Indexed: 11/25/2022]
Abstract
Ni-Zn, Zn-MnO2, and Zn-air batteries have the advantages of inflammability, material abundance, and high specific energy. However, their applications are limited by the poor rechargeability of zinc anodes, which are related to shape changes, dendrite growth, corrosion, passivation, dissolution, etc. In this study, we developed a zeolitic-imidazolate framework (ZIF)-based route to construct a novel ZnO/Sb composite anode. The resultant zinc anode is scaffolded on carbon cloth (CC) and then encapsulated by carbonized resorcinol-formaldehyde resins. Such a carbon-framed ZnO/Sb anode shows the excellent rate and cycling properties because Sb suppresses the corrosion and improves interparticle conductivity, and the ZIF-derived carbon frame accommodates the shape changes, blocks the zinc dissolution, and accelerates the charge transfer. This work demonstrates the effectiveness of anti-corrosion and carbon-framed structure design on pouch and cable-like Ni-Zn batteries.
Collapse
Affiliation(s)
- Weiyi Zhao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ziqiang Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Chenglin Zhong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zihan Shen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xin Jin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huigang Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Double–shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high–performance aqueous zinc–ion batteries. J Colloid Interface Sci 2020; 580:528-539. [DOI: 10.1016/j.jcis.2020.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022]
|