1
|
Kim SI, Kim WJ, Kang JG, Kim DW. Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus. NANO-MICRO LETTERS 2024; 16:219. [PMID: 38884690 PMCID: PMC11183009 DOI: 10.1007/s40820-024-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024]
Abstract
Doped two-dimensional (2D) materials hold significant promise for advancing many technologies, such as microelectronics, optoelectronics, and energy storage. Herein, n-type 2D oxidized Si nanosheets, namely n-type siloxene (n-SX), are employed as Li-ion battery anodes. Via thermal evaporation of sodium hypophosphite at 275 °C, P atoms are effectively incorporated into siloxene (SX) without compromising its 2D layered morphology and unique Kautsky-type crystal structure. Further, selective nucleophilic substitution occurs, with only Si atoms being replaced by P atoms in the O3≡Si-H tetrahedra. The resulting n-SX possesses two delocalized electrons arising from the presence of two electron donor types: (i) P atoms residing in Si sites and (ii) H vacancies. The doping concentrations are varied by controlling the amount of precursors or their mean free paths. Even at 2000 mA g-1, the n-SX electrode with the optimized doping concentration (6.7 × 1019 atoms cm-3) delivers a capacity of 594 mAh g-1 with a 73% capacity retention after 500 cycles. These improvements originate from the enhanced kinetics of charge transport processes, including electronic conduction, charge transfer, and solid-state diffusion. The approach proposed herein offers an unprecedented route for engineering SX anodes to boost Li-ion storage.
Collapse
Affiliation(s)
- Se In Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea
| | - Woong-Ju Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea
| | - Jin Gu Kang
- Nanophotonics Research Center, Korea Institute of Science and Technology, 02792, Seoul, South Korea.
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Seoul, South Korea.
| |
Collapse
|
2
|
Jia C, Zhang F, Zhang N, Li Q, He X, Sun J, Jiang R, Lei Z, Liu ZH. Bifunctional Photoassisted Li-O 2 Battery with Ultrahigh Rate-Cycling Performance Based on Siloxene Size Regulation. ACS NANO 2023; 17:1713-1722. [PMID: 36622112 DOI: 10.1021/acsnano.2c12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Directly integrating the bifunctional photoelectrode into Li-O2 batteries has been considered an effective way to reduce the overpotential and promote electric energy saving. However, more regular investigations on various bifunctional photocatalysts have still been desired for high-performance photoassisted Li-O2 batteries. Herein, a systematic exploration of various-sized siloxene photocatalysts affected by Li-O2 batteries has been introduced. Compared with the utilization of larger-sized siloxene nanosheets (SNSs), the photoassisted Li-O2 battery with a siloxene quantum dot (SQD) photoelectrode delivers a superior round-trip efficiency of 230% based on the highest discharge potential up to 3.72 V and lowest charge potential of 1.60 V and enables the maintenance of a long-term cycling life with only 13% efficiency attenuation after 200 cycles at 0.075 mA/cm2. Furthermore, this system exhibits a record-high rate-cycling performance (162% round-trip efficiency, even at 3 mA/cm2) and a high discharge capacity of 2212 mAh/g at 1 mA/cm2. These ground-breaking performances could be attributed to the synergistic effect of the photocatalytic and electrocatalytic activities of SQD photocatalysts with the ideal conduction band/valence band values, the abundant defective sites, and the stronger O2 and lower LiO2 adsorption strengths of SQD photocatalysts. These systematic research studies highlight the significance of SQD bifunctional photocatalysts and could be extended to other photocatalysts for further high-efficiency photoelectric conversion and storage.
Collapse
Affiliation(s)
- Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Nan Zhang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Qi Li
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Xuexia He
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Jie Sun
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Ruibin Jiang
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an 710062, P.R. China
- Shaanxi Key Laboratory for Advanced Energy Devices, Xi'an 710119, P.R. China
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| |
Collapse
|
3
|
Su Y, Wang S, Ji L, Zhang C, Cai H, Zhang H, Sun W. High surface area siloxene for photothermal and electrochemical catalysis. NANOSCALE 2022; 15:154-161. [PMID: 36478182 DOI: 10.1039/d2nr05140k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Catalysis based on two-dimensional silicon has been under intense investigation recently. However, its substandard catalytic activity is far from industrialization. In this work, we demonstrate a new solution to this problem formulated on the batch synthesis of siloxene with an enhanced specific surface area (217.8 m2 g-1). A two-dimensional porous structure was prepared, enabling great support and dispersion of metal nanoparticles. Catalytic evaluations of such hybrid structures for the (photo)thermal CO2 hydrogenation reaction and the electrochemical hydrogen evolution reaction revealed a significant performance advantage over the benchmark two-dimensional silicon structures synthesized via the conventional method. This work may confer notable viability on two-dimensional silicon for advanced energy, catalytic, and environmental applications.
Collapse
Affiliation(s)
- Yize Su
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Shenghua Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Liang Ji
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Chengcheng Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Haiting Cai
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| | - Wei Sun
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
| |
Collapse
|