1
|
Villanueva ME, Bar L, Porcar L, Gerelli Y, Losada-Pérez P. Resolving the interactions between hydrophilic CdTe quantum dots and positively charged membranes at the nanoscale. J Colloid Interface Sci 2025; 677:620-631. [PMID: 39116560 DOI: 10.1016/j.jcis.2024.07.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
The use of quantum dot nanoparticles (QDs) in bio-applications has gained quite some interest and requires a deep understanding of their interactions with model cell membranes. This involves assessing the extent of nanoparticle disruption of the membrane and how it depends on both nanoparticle and membrane physicochemical properties. Surface charge plays an important role in nanoparticle adsorption, which is primarily driven by electrostatic interactions; yet, once adsorbed, most reported works overlook the subsequent spatial nanoparticle insertion and location within the membrane. There is therefore a need for studies to assess the mutual role of membrane and nanoparticle charge into membrane structure and stability at the nanoscale, with a view to better design and control the functionality of these nanomaterials. In this work, we have resolved the extent of the interactions between hydrophilic, negatively charged CdTe QDs and positively charged lipid bilayers. A multiscale combination of surface-sensitive techniques enabled probing how surface charge mediates QD adsorption and membrane reorganization. Increasing membrane surface charge results into a larger adsorption of oppositely charged QDs, concomitantly inducing structural changes. Hydration of the membrane hydrophobic parts by QDs goes deeper into the inner leaflet with increasing membrane charge, resulting in supported lipid bilayers with decreased nanomechanical stability.
Collapse
Affiliation(s)
- M E Villanueva
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Bar
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium
| | - L Porcar
- Large-Scale Structure Group, Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Y Gerelli
- Italian National Research Council - Institute for Complex Systems (CNR-ISC), and Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.
| | - P Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, 1050 Brussels, Belgium.
| |
Collapse
|
2
|
Basham CM, Spittle S, Sangoro J, El-Beyrouthy J, Freeman E, Sarles SA. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54558-54571. [PMID: 36459500 DOI: 10.1021/acsami.2c16677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
3
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
4
|
Chaudhury A, Varshney GK, Debnath K, Das G, Jana NR, Basu JK. Compressibility of Multicomponent, Charged Model Biomembranes Tunes Permeation of Cationic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3550-3562. [PMID: 33749276 DOI: 10.1021/acs.langmuir.0c03408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cells respond to external stress by altering their membrane lipid composition to maintain fluidity, integrity and net charge. However, in interactions with charged nanoparticles (NPs), altering membrane charge could adversely affect its ability to transport ions across the cell membrane. Hence, it is important to understand possible pathways by which cells could alter zwitterionic lipid composition to respond to NPs without compromising membrane integrity and charge. Here, we report in situ synchrotron X-ray reflectivity (XR) measurements to monitor the interaction of cationic NPs in the form of quantum dots, with phase-separated supported lipid bilayers of different compositions containing an anionic lipid and zwitterionic lipids having variable degrees of stiffness. We observe that the extent of NP penetration into the respective membranes, as estimated from XR data analysis, is inversely related to membrane compression moduli, which was tuned by altering the stiffness of the zwitterionic lipid component. For a particular membrane composition with a discernible height difference between ordered and disordered phases, we were able to observe subtle correlations between the extent of charge on the NPs and the specificity to bind to the charged and ordered phase, contrary to that observed earlier for phase-separated model biomembranes containing no charged lipids. Our results provide microscopic insight into the role of membrane rigidity and electrostatics in determining membrane permeation. This can lead to great potential benefits in rational designing of NPs for bioimaging and drug delivery applications as well as in assessing and alleviating cytotoxicity of NPs.
Collapse
Affiliation(s)
- Anurag Chaudhury
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | | | - Koushik Debnath
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Gangadhar Das
- KEK-High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Jaydeep Kumar Basu
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|