1
|
Risse K, Drusch S. (Non)linear Interfacial Rheology of Tween, Brij and Span Stabilized Oil-Water Interfaces: Impact of the Molecular Structure of the Surfactant on the Interfacial Layer Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39126646 PMCID: PMC11363120 DOI: 10.1021/acs.langmuir.4c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
During emulsification and further processing (e.g., pasteurizing), the oil-water interface is mechanically and thermally stressed, which can lead to oil droplet aggregation and coalescence, depending on the interfacial properties. Currently, there is a lack of insights into the impact of the molecular structure (headgroup and FA chain) of low molecular weight emulsifiers (LME) on the resulting interfacial properties. Additionally, the crystallization/melting of the oil/the emulsifier is often neglected within interfacial rheological experiments. Within this study, the stability of interfaces formed by Tween, Span or Brij was determined as a function of their molecular structure, taking crystallization effects of the LME into account. The headgroup was kept constant while varying the FA, or vice versa. The interfacial film properties (viscoelasticity) were investigated at different temperatures using dilatational and interfacial shear rheology. Both the headgroup and the FA chain impacted the interfacial properties. For the same FA composition, a rather small hydrophobic headgroup resulted in a higher packed interface. The interfacial elasticity increased with increased FA chain length (C12 to C18). This seemed to be particularly the case when the emulsifier crystallized on the interface among cooling. In the case of a densely packed interface, network formation due to chain crystallization of the LME's FA chains occurs during the cooling step. The resulting interface shows predominantly elastic behavior.
Collapse
Affiliation(s)
- Kerstin Risse
- Technische Universität
Berlin, Faculty III Process
Sciences, Institute of Food Technology and Food Chemistry, Department
of Food Technology and Food Material Science, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stephan Drusch
- Technische Universität
Berlin, Faculty III Process
Sciences, Institute of Food Technology and Food Chemistry, Department
of Food Technology and Food Material Science, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
2
|
Wang X, Wu Y, Li X, Li Y, Tang W, Dan J, Hong C, Wang J, Yang X. Effect of Triterpenoid Saponins as Foaming Agent on Mechanical Properties of Geopolymer Foam Concrete. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3921. [PMID: 39203096 PMCID: PMC11355855 DOI: 10.3390/ma17163921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Geopolymer foam concrete (GFC), an emerging thermal insulation material known for its environmentally friendly and low-carbon attributes, has gained prominence for its use in bolstering building energy efficiency. A critical challenge in GFC production is foam destabilization by the alkaline environment in which foam is supersaturated with salt. In this study, GFC was prepared by using triterpene saponin (TS), sodium dodecyl sulphate (SDS), and cetyltrimethylammonium bromide (CTAB) as blowing agents, with fly ash as the precursor and calcium carbide slag (CA) combined with Glauber's salt (GS, Na2SO4 ≥ 99%) as the activator. The effect of GFC on mechanical properties was analyzed by examining its fluidity, pore structure, dry density, and compressive strength. The results show that TS has a stable liquid film capable of adapting to the adverse effects of salt supersaturation and alkaline environments. TS is highly stable in the GFC matrix, and so the corresponding pore size is small, and the connectivity is low in the hardened GFC. In addition, the hydration products of GFC exhibit different morphologies depending on the surfactant used. TS has better water retention due to hydrogen bonding, which facilitates the hydration process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; (X.W.); (Y.W.); (Y.L.); (W.T.); (J.D.); (C.H.)
| | - Yangyang Wu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; (X.W.); (Y.W.); (Y.L.); (W.T.); (J.D.); (C.H.)
| | - Xiangguo Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430074, China;
| | - Yuheng Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; (X.W.); (Y.W.); (Y.L.); (W.T.); (J.D.); (C.H.)
| | - Wen Tang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; (X.W.); (Y.W.); (Y.L.); (W.T.); (J.D.); (C.H.)
| | - Jianming Dan
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; (X.W.); (Y.W.); (Y.L.); (W.T.); (J.D.); (C.H.)
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; (X.W.); (Y.W.); (Y.L.); (W.T.); (J.D.); (C.H.)
| | - Jinyu Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China; (X.W.); (Y.W.); (Y.L.); (W.T.); (J.D.); (C.H.)
| | - Xiaoqiang Yang
- Xinjiang Beixin Building Materials Industry Group Co., Ltd., Uygur 830011, China
| |
Collapse
|
3
|
Niu H, Chen X, Chen X, Chen H, Dou Z, Wang W, Fu X. Interfacial Behavior and Long-Term Stability of the Emulsions Stabilized by Sugar Beet Pectin-Ca 2+ Complexes with Different Cross-Linking Degrees. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38329064 DOI: 10.1021/acs.langmuir.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Recent studies showed that sugar beet pectin exhibited more excellent emulsifying properties than traditional citrus peel pectin and apple pectin ascribed to the higher content of neutral sugar, protein, ferulic acid, and acetyl groups. It is precisely because of the extremely complex molecular structure of pectin that the emulsifying properties of the pectin-Ca2+ complex are still unclear. In this study, SBP-Ca2+ complexes with different cross-linking degrees were prepared. Subsequently, their interfacial adsorption kinetics, the resistance of interfacial films to external perturbances, and the long-term stability of the emulsions formed by these SBP-Ca2+ complexes were measured. The results indicated that the highly cross-linked SBP-Ca2+ complex exhibited slower interfacial adsorption kinetics than SBP alone. Moreover, compared with SBP alone, the oil-water interfacial film loaded by the highly cross-linked SBP-Ca2+ complex exhibited a lower elasticity and a poorer resistance to external perturbances. This resulted in a larger droplet size, a lower ζ-potential value, a larger continuous viscosity, and a worse long-term stability of the emulsion formed by the highly cross-linked SBP-Ca2+ complex. This study has very important guiding significance for deeply understanding the emulsification mechanism of the pectin-Ca2+ complex.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, P. R. China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, P. R. China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, P. R. China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, P. R. China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, P. R. China
| |
Collapse
|
4
|
Cai J, Wu J, Yu X, Wan Z, Yang X. Interfacial assembly and rheology of multi-responsive glycyrrhizic acid at liquid interfaces. SOFT MATTER 2024; 20:1173-1185. [PMID: 38164656 DOI: 10.1039/d3sm00973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Glycyrrhizic acid (GA), a naturally derived food-grade saponin molecule, is a promising alternative to synthetic surfactants for stabilizing multiphase systems including emulsions and foams, due to its biological activity and surface-active properties. Understanding the interfacial behavior of GA, particularly in relation to its complex self-assembly behaviors in water induced by multiple environmental stimuli, is crucial to its application in multiphase systems. In this study, we comprehensively investigate the interfacial structure and rheological properties of GA systems, as a function of pH and temperature, through Langmuir-Blodgett films combined with atomic force microscopy, interfacial particle tracking, adsorption kinetics, stress-relaxation behavior and interfacial dilatational rheology. The variation of solution pH provokes pronounced changes in the interfacial properties of GA. At pH 2 and 4, GA fibril aggregates/fibrils adsorb rapidly, followed by rearrangement into large lamellar and rod-like structures, forming a loose and heterogeneous fibrous network at the interface, which exhibit a stretchable gel-like behavior. In contrast, GA at pH 6 and 8, featuring micelles or monomers in solutions, adsorb slowly to the interface and re-assemble partially into small micelle-like or irregular structures, which lead to a dense and homogeneous interfacial layer with stiffer glassy-like responses. With successively elevated temperature, the GA structures (pH 4) at the interface break into smaller fragments and further adsorption is promoted. Upon cooling, the interfacial tension of GA further decreases and a highly elastic interfacial layer may be formed. The diverse GA assemblies in bulk solution impart them with rich and intriguing interfacial behaviors, which may provide valuable mechanistic insights for the development of novel edible soft matter stabilized by GA.
Collapse
Affiliation(s)
- Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
5
|
Ntone E, Yang J, Meinders MBJ, Bitter JH, Sagis LMC, Nikiforidis CV. The emulsifying ability of oleosomes and their interfacial molecules. Colloids Surf B Biointerfaces 2023; 229:113476. [PMID: 37499547 DOI: 10.1016/j.colsurfb.2023.113476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Oleosomes are natural oil droplets, present in all organisms and abundant in oilseeds. After their aqueous extraction from oilseeds, they can be directly utilized as oil droplets in food, cosmetics and all types of oil-in-water emulsion systems. However, to expand the potential uses of oleosomes as green ingredients and to valorize oilseeds as efficient as possible, we explored their emulsifying ability. Oleosomes were extracted from rapeseeds, and 10.0 wt% oil-in-water emulsions were created after homogenization with 0.5-6.0 wt% oleosomes, and the droplet size of the emulsions and their structure was measured by laser diffraction and confocal laser scanning microscopy (CLSM), respectively. The emulsion with an oleosome concentration lower than 1.0 wt% gave unstable emulsions with visible free oil. At oleosome concentrations at 1.5 wt% or higher, we obtained stable emulsions with droplet sizes between 2.0 and 12.0 µm. To investigate the role of the oleosome interfacial molecules in stabilizing emulsions we also studied their emulsifying and interfacial properties (using drop tensiometry) after isolating them from the oleosome structure. Both oleosomes and their isolated interfacial molecules exhibited a similar behavior on the oil-water interfaces, forming predominantly elastic interfacial films, and also showed a similar emulsifying ability. Our results show that oleosomes are not stabilizing the oil-in-water emulsions as intact particles, but they provide their interfacial molecules, which are enough to stabilize an oil-water surface up to about 2 times bigger than the initial oleosome surface. The understanding of the behavior of oleosomes as emulsifiers, opens many possibilities to use oleosomes as alternative to synthetic emulsifiers in food and pharma applications.
Collapse
Affiliation(s)
- Eleni Ntone
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands; TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands
| | - Jack Yang
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands; TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands
| | - Marcel B J Meinders
- TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands; Agrotechnology and Food Sciences Group, Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands.
| |
Collapse
|
6
|
de Groot A, Yang J, Sagis LMC. Surface stress decomposition in large amplitude oscillatory interfacial dilatation of complex interfaces. J Colloid Interface Sci 2023; 638:569-581. [PMID: 36773519 DOI: 10.1016/j.jcis.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
HYPOTHESIS Multiphase materials are often subjected to large deformations during processing, but the rheological responses of complex interfaces (e.g. stabilized by proteins) in this nonlinear deformation regime are still poorly understood. We expect nonlinearities in the response to be introduce by changes of the interfacial network and surface density of the emulsifier. EXPERIMENTS Large amplitude oscillatory dilatation (LAOD) experiments were performed on WPI-, pea albumin-, pea globulin- and rapeseed lecithin-stabilized interfaces and analyzed with a general stress decomposition (GSD). With GSD, the stress response was decomposed into the four stress terms (τ1-τ4). Here, τ1 and τ2 represent, the elastic and viscous contribution of the odd Fourier harmonics, and τ3 and τ4 represent the dissipative and recoverable contribution of the even harmonics. FINDINGS Analysis of WPI-, pea albumin-, pea globulin- and rapeseed lecithin-stabilized interfaces revealed that higher odd harmonics (k≥3) describe in-plane network responses and that even harmonics describe surface density changes. Analysis of these complex interfaces showed that GSD is a valuable tool for (quantitative) description of interfacial responses in LAOD, providing new insights into the origin of asymmetric nonlinear stress responses.
Collapse
Affiliation(s)
- Anteun de Groot
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Jack Yang
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands; Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands.
| |
Collapse
|
7
|
Li J, Huang Y, Peng X, Luo W, Gantumur MA, Jiang Z, Hou J. Physical treatment synergized with natural surfactant for improving gas-water interfacial behavior and foam characteristics of α-lactalbumin. ULTRASONICS SONOCHEMISTRY 2023; 95:106369. [PMID: 36965313 PMCID: PMC10060377 DOI: 10.1016/j.ultsonch.2023.106369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/23/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate effect of physical treatment (ultrasound, U/high pressure homogenization, H/combined treatment, UH or HU) and surfactant (Mogroside V, Mog) on air/water interface adsorption and foaming properties of α-lactalbumin (ALa). Firstly, the binding of Mog and all physical-treated ALa was a static quenching process. Mog had the greatest binding affinity for HU-ALa among all treated samples. U or H treatment could change surface hydrophobicity of ALa/Mog complex. Secondly, at the molar ratio (ALa:Mog) of 1:50, foaming ability (FA) of all ALa samples got the maximum. The sequence of FA in ALa and ALa/Mog complex was listed as follow: HU > U > H > UH. Moreover, foaming stability (FS) of HU-ALa was the highest, followed by H-ALa, U-ALa and UH-ALa. Meanwhile, low concentration Mog increased FS of ALa or UH-ALa, but it reduced FS of H-ALa, U-ALa and HU-ALa. Quartz crystal microbalance with dissipation monitoring (QCM-D) experiment indicated that ALa/Mog complex after U or H treatment was quickly absorbed at air/water interface, compared with the treated ALa, and HU-ALa/Mog had the largest frequency shift. In addition, HU-ALa had the thickest bubble membrane and the highest dissipation shift in all samples, indicating that the absorbed membrane thickness and viscoelasticity of samples was correlated with foam stability. Therefore, U and H treatment synergism with Mog was an effective approach to enhance foam properties of ALa, which indicated that HU-treated ALa/Mog complex could be viewed as the safe and efficient foaming agent applied in food processing.
Collapse
Affiliation(s)
- Jinzhe Li
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuxuan Huang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinhui Peng
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenwen Luo
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Juncai Hou
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Self-similarity and Payne effect of whey protein-escin mixtures at the air-water interface. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
10
|
Li Y, Liu X, Liu H, Zhu L. Interfacial adsorption behavior and interaction mechanism in saponin–protein composite systems: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Ćirić A, Budinčić JM, Medarević Đ, Dobričić V, Rmandić M, Barudžija T, Malenović A, Petrović L, Djekic L. Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin. Int J Biol Macromol 2022; 221:48-60. [PMID: 36058395 DOI: 10.1016/j.ijbiomac.2022.08.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Escin is an amphiphilic and weakly acidic drug that oral administration may lead to the irritation of gastric mucosa. The entrapment of escin into chitosan (CH)/xanthan gum (XG)-based polyelectrolyte complexes (PECs) can facilitate controlled drug release which may be beneficial for the reduction of its side effects. This study aimed to investigate the influence of escin content and drying method on the formation, physicochemical, and controlled, pH-dependent drug release properties of CH/XG-based PECs. Measurements of transmittance, conductivity, and rheological characterization confirmed the formation of CH/XG-based PECs with escin entrapped at escin-to-polymers mass ratios 1:1, 1:2, and 1:4. Ambient-dried PECs had higher yield, entrapment efficiency, and escin content in comparison with spray-dried ones. FT-IR spectra confirmed the interactions between CH, XG, and escin, which were stronger in ambient-dried PECs. PXRD and DSC analyses showed the amorphous escin character in all dry PECs, regardless of the drying method. The most promising controlled and pH-dependent in vitro escin release was from the ambient-dried PEC at the escin-to-polymers mass ratio of 1:1. For that reason and due to the highest yield and entrapment efficiency, this carrier has the potential to prevent the irritation of gastric mucosa after oral administration of escin.
Collapse
Affiliation(s)
- Ana Ćirić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelena Milinković Budinčić
- University of Novi Sad, Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, Boulevard cara Lazara 1, 21102 Novi Sad, Serbia.
| | - Đorđe Medarević
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Vladimir Dobričić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Milena Rmandić
- University of Belgrade, Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Tanja Barudžija
- University of Belgrade, Vinča Institute of Nuclear Sciences, Laboratory for Theoretical Physics and Condensed Matter Physics, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia.
| | - Anđelija Malenović
- University of Belgrade, Faculty of Pharmacy, Department of Drug Analysis, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Lidija Petrović
- University of Novi Sad, Faculty of Technology, Department of Biotechnology and Pharmaceutical Engineering, Boulevard cara Lazara 1, 21102 Novi Sad, Serbia.
| | - Ljiljana Djekic
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
12
|
The interfacial behavior and long-term stability of emulsions stabilized by gum arabic and sugar beet pectin. Carbohydr Polym 2022; 291:119623. [DOI: 10.1016/j.carbpol.2022.119623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023]
|
13
|
El Omari Y, Yousfi M, Duchet-Rumeau J, Maazouz A. Recent Advances in the Interfacial Shear and Dilational Rheology of Polymer Systems: From Fundamentals to Applications. Polymers (Basel) 2022; 14:polym14142844. [PMID: 35890621 PMCID: PMC9320100 DOI: 10.3390/polym14142844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
The study of the viscoelastic properties of polymer systems containing huge internal two-dimensional interfacial areas, such as blends, foams and multilayer films, is of growing interest and plays a significant role in a variety of industrial fields. Hence, interfacial rheology can represent a powerful tool to directly investigate these complex polymer–polymer interfaces. First, the current review summarizes the theoretical basics and fundamentals of interfacial shear rheology. Particular attention has been devoted to the double-wall ring (DWR), bicone, Du Noüy ring and oscillating needle (ISR) systems. The measurement of surface and interfacial rheological properties requires a consideration of the relative contributions of the surface stress arising from the bulk sub-phases. Here, the experimental procedures and methodologies used to correct the numerical data are described considering the viscoelastic nature of the interface. Second, the interfacial dilational rheology is discussed, starting with the theory and underlying principles. In particular, the Langmuir trough method, the oscillating spinning drop technique and the oscillating pendant drop technique are investigated. The major pioneering studies and latest innovations dedicated to interfacial rheology in both shear and dilatation–compression are highlighted. Finally, the major challenges and limits related to the development of high-temperature interfacial rheology at the molten state are presented. The latter shows great potential for assessing the interfaces of polymer systems encountered in many high-value applications.
Collapse
Affiliation(s)
- Younes El Omari
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CEDEX, F-69621 Villeurbanne, France; (Y.E.O.); (J.D.-R.); (A.M.)
| | - Mohamed Yousfi
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CEDEX, F-69621 Villeurbanne, France; (Y.E.O.); (J.D.-R.); (A.M.)
- Correspondence:
| | - Jannick Duchet-Rumeau
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CEDEX, F-69621 Villeurbanne, France; (Y.E.O.); (J.D.-R.); (A.M.)
| | - Abderrahim Maazouz
- Université de Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CEDEX, F-69621 Villeurbanne, France; (Y.E.O.); (J.D.-R.); (A.M.)
- Hassan II Academy of Science and Technology, Rabat 69621, Morocco
| |
Collapse
|
14
|
Drusch S, Klost M, Kieserling H. Current knowledge on the interfacial behaviour limits our understanding of plant protein functionality in emulsions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Huang YH, Li X, Michelon M, Leopercio BC, Carvalho MS, Frostad JM. Effects of aging on the shelf life and viscoelasticity of gellan gum microcapsules. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Glikman D, García Rey N, Richert M, Meister K, Braunschweig B. pH effects on the molecular structure and charging state of β-Escin biosurfactants at the air-water interface. J Colloid Interface Sci 2021; 607:1754-1761. [PMID: 34598032 DOI: 10.1016/j.jcis.2021.09.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/24/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Saponins like β-escin exhibit an unusually high surface activity paired with a remarkable surface rheology which makes them as biosurfactants highly interesting for applications in soft matter colloids and at interfaces. We have applied vibrational sum-frequency generation (SFG) to study β-escin adsorption layers at the air-water interface as a function of electrolyte pH and compare the results from SFG spectroscopy to complementary experiments that have addressed the surface tension and the surface dilational rheology. SFG spectra of β-escin modified air-water interfaces demonstrate that the SFG intensity of OH stretching vibrations from interfacial water molecules is a function of pH and dramatically increases when the pH is increased from acidic to basic conditions and reaches a plateau at a solution pH of > 6. These changes are attributable to the interfacial charging state and to the deprotonation of the carboxylic acid group of β-escin. Thus, the change in OH intensity provides qualitative information on the degree of protonation of this group at the air-water interface. At pH < 4 the air-water interface is dominated by the charge neutral form of β-escin, while at pH > 6 its carboxylic acid group is fully deprotonated and, consequently, the interface is highly charged. These observations are corroborated by the change in equilibrium surface tension which is qualitatively similar to the change in OH intensity as seen in the SFG spectra. Further, once the surface layer is charge neutral, the surface elasticity drastically increases. This can be attributed to a change in prevailing intermolecular interactions that change from dominating repulsive electrostatic interactions at high pH, to dominating attractive interactions, such as hydrophobic and dispersive interactions, as well as, hydrogen bonding at low pH values. In addition to the clear changes in OH intensity from interfacial H2O, the SFG spectra exhibit drastic changes in the CH bands from interfacial β-escin which we relate to differences in the net molecular orientation. This orientation change is driven by tighter packing of β-escin adsorption layers when the β-escin moiety is in its charge neutral form (pH < 4).
Collapse
Affiliation(s)
- Dana Glikman
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Natalia García Rey
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Manuela Richert
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster 48149, Germany
| | - Konrad Meister
- Max Planck Institute for Polymer Research, Mainz 55128, Germany; University of Alaska Southeast, Juneau, AK 99801, United States
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster 48149, Germany.
| |
Collapse
|
17
|
Fuhrmann PL, Breunig S, Sala G, Sagis L, Stieger M, Scholten E. Rheological behaviour of attractive emulsions differing in droplet-droplet interaction strength. J Colloid Interface Sci 2021; 607:389-400. [PMID: 34509113 DOI: 10.1016/j.jcis.2021.08.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS We hypothesise that interaction strength between oil droplets determine the rheological properties of oil-in-water (O/W) emulsions by simultaneous formation and break-up of bonds between droplets. Using small (SAOS) and large (LAOS) amplitude oscillatory shear measurements, we aim to distinguish different classes of emulsions based on the specific microstructural evolution of the emulsions. EXPERIMENTS Concentrated O/W emulsions differing in droplet-droplet interaction strength were obtained. Different interaction strength was obtained using different types of interactions; (a) electrostatic attraction, (b) salt bridging, or (c) crosslinking. FINDINGS In line with our hypothesis, different rheological events in emulsions depend on the droplet-droplet interaction strength. Strong interactions lead to monotonous yielding, and droplets undergo jamming or densification to provide strain hardening and gel-like behaviour. Emulsions with weak interactions exhibit two-step yielding (SAOS) and continuous yielding in LAOS; indicating a soft-glassy material. In emulsions above maximum packing, and with weak interactions the rheology is controlled by cluster/cage breaking, and transient formation of new clusters. For medium-strength interactions, two-step yielding was reduced, and apparent stain-hardening occurred. The probability of two distinct time scales of yielding is hindered by stronger interactions and jamming. Overall, in concentrated emulsions, yielding is determined by network rupture and reformation, cluster rearrangement and -breaking, which in turn is influenced by interaction type and strength. We present a more differentiated categorisation of emulsions based on interaction strength.
Collapse
Affiliation(s)
- Philipp L Fuhrmann
- TiFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands; Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Swantje Breunig
- Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Guido Sala
- Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Leonard Sagis
- Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Markus Stieger
- TiFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Food Quality and Design Group, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Elke Scholten
- TiFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands; Physics and Physical Chemistry of Foods, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
18
|
Air-water interfacial behaviour of whey protein and rapeseed oleosome mixtures. J Colloid Interface Sci 2021; 602:207-221. [PMID: 34119758 DOI: 10.1016/j.jcis.2021.05.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS Plant seeds store lipids in oleosomes, which are storage organelles with a triacylglycerol (TAG) core surrounded by a phospholipid monolayer and proteins. Due to their membrane components, oleosomes have an affinity for the air/oil-water interface. Therefore, it is expected that oleosomes can stabilise interfaces, and also compete with proteins for the air-water interface. EXPERIMENTS We mixed rapeseed oleosomes with whey protein isolate (WPI), and evaluated their air-water interfacial properties by interfacial rheology and microstructure imaging. To understand the contribution of the oleosome components to the interfacial properties, oleosome membrane components (phospholipids and membrane proteins) or rapeseed lecithin (phospholipids) were also mixed with WPI. FINDINGS Oleosomes were found to disrupt after adsorption, and formed TAG/phospholipid-rich regions with membrane fragments at the interface, forming a weak and mobile interfacial layer. Mixing oleosomes with WPI resulted in an interface with TAG/phospholipid-rich regions surrounded by whey protein clusters. Membrane components or lecithin mixed with proteins also resulted in an interface where WPI molecules aggregated into small WPI domains, surrounded by a continuous phase of membrane components or phospholipids. We also observed an increase in stiffness of the interfacial layer, due to the presence of oleosome membrane proteins at the interface.
Collapse
|
19
|
Sompalli NK, Mohanty A, Mohan AM, Deivasigamani P. Visible-light harvesting innovative W 6+/Yb 3+/TiO 2 materials as a green methodology photocatalyst for the photodegradation of pharmaceutical pollutants. Photochem Photobiol Sci 2021; 20:401-420. [PMID: 33721273 DOI: 10.1007/s43630-021-00028-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 01/13/2023]
Abstract
In this work, we report on the synthesis of a new-age reusable visible-light photocatalyst using a heterojunction nanocomposite of W6+/Yb3+ on a mixed-phase mesoporous network of monolithic TiO2. The structural properties of the monolithic photocatalysts are characterized using p-XRD, SEM-EDAX, TEM-SAED, XPS, PLS, UV-Vis-DRS, FT-IR, micro-Raman, TG-DTA, and N2 isotherm analysis. The electron microscopic analysis reveals a mesoporous network of ordered worm-like monolithic design, with a polycrystalline mixed-phase (anatase/rutile) TiO2 composite, as indicated by diffraction studies. The UV-Vis-DRS analysis reveals a redshift in the light absorption characteristics of the mixed-phase TiO2 monolith as a function of W6+/Yb3+ co-doping. It is observed that the use of (8.0 mol%)W6+/0.4 (mole%)Yb3+ co-doped monolithic TiO2 photocatalyst, with an energy bandgap of 2.77 eV demonstrates superior visible-light photocatalysis, which corroborates with the PLS studies in terms of voluminous e-/h+ pair formation. The practical application of the photocatalyst has been investigated through a time-dependent dissipation of enrofloxacin, a widely employed antimicrobial drug, and its degradation pathway has been monitored by LC-MS-ESI and TOC analysis. The impact of physio-chemical parameters such as solution pH, sensitizers, drug concentration, dopant/codopant stoichiometry, catalyst quantity, and light intensity has been comprehensively studied to monitor the process efficiency.
Collapse
Affiliation(s)
- Naveen Kumar Sompalli
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India
| | - Ankita Mohanty
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu, 632014, India.
| |
Collapse
|
20
|
Abstract
A comparative study is reported on the interfacial properties of a set of surfactants and is discussed in terms of the effects on the features of the corresponding oil-water emulsions. The surfactants are saponin, Tween 80 and citronellol glucoside (CG), while the oil is Miglyol 812N—A Medium Chain Triglyceride (MCT) oil. Due to their high biocompatibility, all these compounds are variously utilized in food, cosmetic or pharmaceutical products. Among the surfactants, which are all soluble in water, CG presents also an important solubility in oil, as shown by the measured partition coefficient. For these systems, dynamic and equilibrium interfacial tensions and dilational viscoelasticity are measured as a function of the surfactant concentration and analyzed according to available adsorption models. In order to compare these results with the time evolution of the corresponding emulsions, the actual surfactant concentration in the matrix phase of the emulsion is accounted for. This may differ significantly from the nominal concentration of the solutions before dispersing them, because of the huge area of droplets available for surfactant adsorption in the emulsion. Using this approach allows the derivation of the correlations between the observed emulsion behavior and the actual surfactant coverage of the droplet interface.
Collapse
|