1
|
Xiong J, Ye W, Mu L, Lu X, Zhu J. Separation of Mono-/Divalent Ions via Controlled Dynamic Adsorption/Desorption at Polythiophene Coated Carbon Surface with Flow-Electrode Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400288. [PMID: 38593337 DOI: 10.1002/smll.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Capacitive deionization for selective separation of ions is rarely reported since it relies on the electrostatic attraction of oppositely charged ions with no capability to distinguish ions of different valent states. Using molecular dynamic simulation, a screening process identified a hybrid material known as AC/PTh, which consists of activated carbon with a thin layer of polythiophene (PTh) coating. By utilizing AC/PTh as electrode material implementing the short-circuit cycle (SCC) mode in flow-electrode capacitive deionization (FCDI), selective separation of mono-/divalent ions can be realized via precise control of dynamic adsorption and desorption of mono-/divalent ions at a particular surface. Specifically, AC/PTh shows strong interaction with divalent ions but weak interaction with monovalent ions, the distribution of divalent ions can be enriched in the electric double layer after a couple of adsorption-desorption cycles. At Cu2+/Na+ molar ratio of 1:40, selectivity toward divalent ions can reach up to 110.3 in FCDI SCC mode at 1.0 V. This work presents a promising strategy for separating ions of different valence states in a continuously operated FCDI device.
Collapse
Affiliation(s)
- Jingjing Xiong
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenkai Ye
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liwen Mu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaohua Lu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiahua Zhu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Wu G, Wang H, Huang L, Yan J, Chen X, Zhu H, Wu Y, Liu S, Shen X, Liu W, Liu X, Zhang H. Copper hexacyanoferrate/carbon sheet combination with high selectivity and capacity for copper removal by pseudocapacitance. J Colloid Interface Sci 2024; 659:993-1002. [PMID: 38224631 DOI: 10.1016/j.jcis.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The efficient capture of copper ions (Cu2+) in wastewater has dual significance in pollution control and resource recovery. Prussian blue analog (PBA)-based pseudocapacitive materials with open frameworks and abundant metal sites have attracted considerable attention as capacitive deionization (CDI) electrodes for copper removal. In this study, the efficiency of copper hexacyanoferrate (CuHCF) as CDI electrode for Cu2+ treating was evaluated for the first time upon the successful synthesis of copper hexacyanoferrate/carbon sheet combination (CuHCF/C) by introducing carbon sheet as conductive substrate. CuHCF/C exhibited significant pseudocapacitance and high specific capacitance (52.92 F g-1) through the intercalation, deintercalation, and coupling of Cu+/Cu2+ and Fe2+/Fe3+ redox pairs. At 0.8 an applied voltage and CuSO4 feed liquid concentration of 100 mg L-1, the salt adsorption capacity was 134.47 mg g-1 higher than those of most reported electrodes. Moreover, CuHCF/C demonstrated excellent Cu2+ selectivity in multi-ion coexisting solutions and in actual wastewater experiments. Density functional theory (DFT) calculations were employed to elucidate the mechanism. This study not only reveals the essence of Cu2+ deionization by PBAs pseudocapacitance with promising potential applications but also provides a new strategy for selecting efficient CDI electrodes for Cu2+ removal.
Collapse
Affiliation(s)
- Guoqing Wu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Hongyu Wang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Xuanxuan Chen
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Huabing Zhu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Yi Wu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Shumei Liu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Xiaozhen Shen
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Weiqi Liu
- International Department, The Affiliated High School of South China Normal University, No.1 Zhongshan Avenue West, Tianhe District, Guangzhou 510630, PR China
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Wang S, Zhuang H, Shen X, Zhao L, Pan Z, Liu L, Lv S, Wang G. Copper removal and recovery from electroplating effluent with wide pH ranges through hybrid capacitive deionization using CuSe electrode. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131785. [PMID: 37301073 DOI: 10.1016/j.jhazmat.2023.131785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
In modern industry, selective extraction and recovery of Cu from strongly acidic electroplating effluent are crucial to reduce carbon emissions, alleviate resource scarcity, and mitigate water pollution, yielding considerable economic and environmental benefits. This study proposed a high-efficiency CuSe electrode to selectively remove Cu from electroplating effluent via hybrid capacitive deionization (HCDI). The potential of this electrode was thoroughly evaluated to assess its effectiveness. The CuSe electrode exhibited superior deionization performance in terms of Cu adsorption capacity, selectivity, and applicability in various water matrices. Specifically, under strong acid conditions (1 M H+), the CuSe electrode maintained an optimal adsorption capacity of 357.36 mg g-1 toward Cu2+. In systems containing salt ions, heavy metals, and actual electroplating wastewater, the CuSe electrode achieved a remarkable removal efficiency of up to 90% for Cu2+ with a high distribution coefficient Kd. Notably, the capacitive deionization (CDI) system demonstrated the simultaneous removal of Cu-EDTA. The removal mechanism was further revealed using ex-situ X-ray diffraction and X-ray photoelectron spectroscopy analyses. Overall, this study presents a practical approach that extends the capabilities of CDI platforms for effectively removing and recovering Cu from acidic electroplating effluent.
Collapse
Affiliation(s)
- Shiyong Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Haohong Zhuang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Xiaoyan Shen
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Lin Zhao
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Zhihao Pan
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Lizhi Liu
- Bonnietech (Dongguan) Applied Materials Company, Dongguan 523106, Guangdong, PR China
| | - Sihao Lv
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
| | - Gang Wang
- School of Environment and Civil Engineering, Research Center for Eco-Environment Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China; Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523106, Guangdong, PR China.
| |
Collapse
|
4
|
Du J, Xing W, Yu J, Feng J, Tang L, Tang W. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe 2/mesoporous carbon hollow spheres. WATER RESEARCH 2023; 235:119831. [PMID: 36893590 DOI: 10.1016/j.watres.2023.119831] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Transition-metal dichalcogenides can be used for capacitive deionization (CDI) via pseudocapacitive ion intercalation/de-intercalation due to their unique two-dimensional (2D) laminar structure. MoS2 has been extensively studied in the hybrid capacitive deionization (HCDI), but the desalination performance of MoS2-based electrodes remains only 20-35 mg g-1 on average. Benefiting from the higher conductivity and larger layer spacing of MoSe2 than MoS2, it is expected that MoSe2 would exhibit a superior HCDI desalination performance. Herein, for the first time, we explored the use of MoSe2 in HCDI and synthesized a novel MoSe2/MCHS composite material by utilizing mesoporous carbon hollow spheres (MCHS) as the growth substrate to inhibit the aggregation and improve the conductivity of MoSe2. The as-obtained MoSe2/MCHS presented unique 2D/3D interconnected architectures, allowing for synergistic effects of intercalation pseudocapacitance and electrical double layer capacitance (EDLC). An excellent salt adsorption capacity of 45.25 mg g- 1 and a high salt removal rate of 7.75 mg g- 1 min-1 were achieved in 500 mg L- 1 NaCl feed solution at an applied voltage of 1.2 V in batch-mode tests. Moreover, the MoSe2/MCHS electrode exhibited outstanding cycling performance and low energy consumption, making it suitable for practical applications. This work demonstrates the promising application of selenides in CDI and provides new insights for ration design of high-performance composite electrode materials.
Collapse
Affiliation(s)
- Jiaxin Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Wenle Xing
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Jiaqi Yu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jing Feng
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Chen X, Deng W, Miao L, Gao M, Ao T, Chen W, Ueyama T, Dai Q. Selectivity adsorption of sulfate by amino-modified activated carbon during capacitive deionization. ENVIRONMENTAL TECHNOLOGY 2023; 44:1505-1517. [PMID: 34762018 DOI: 10.1080/09593330.2021.2005689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
ABSTRACTCapacitive deionization (CDI) is an environmentally friendly desalination technique with low energy consumption. However, unmodified carbon electrode materials have poor sulfate selectivity and adsorption capacity. In this work, to improve sulfate selectivity, we prepared activated carbon materials loaded with different amino contents by grafting amino groups via acid treatment for different times. In the competitive ion adsorption experiments, the sulfate selectivity of AC was only 0.64 and the amino-modified AC increased by 1.98-2.52 times due to the formation of stronger hydrogen bonds between the amino group and sulfate. AC-NH2-4 had the best selectivity and the sulfate selective coefficient was 2.25. The desorption of sulfate was 92.46% within one hour. In addition, the surface of the amino-modified activated carbon showed significantly improved electrochemical properties and better capacitance. The specific capacitance of amino-modified AC in different electrolyte solutions was consistent with the competitive adsorption results. The specific capacitance of amino-modified AC in Na2SO4 electrolyte solution was the highest. The modified electrode material also had the advantages of a higher adsorption capacity and excellent regeneration performance after continuous electric adsorption-desorption cycles. Therefore, it may have development potential to selectively adsorb sulfate in practical applications.
Collapse
Affiliation(s)
- Xiaohong Chen
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Wenyang Deng
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, PR People's Republic of China
| | - Luwei Miao
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ming Gao
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, People's Republic of China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, People's Republic of China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | | | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Yao YZ, Shi YJ, Hu KH. Preparation of Molybdenum Disulfide with Different Nanostructures and Its Adsorption Performance for Copper (Ⅱ) Ion in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1194. [PMID: 37049287 PMCID: PMC10096653 DOI: 10.3390/nano13071194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The environmental problems in the world are attracting increasing amounts of attention, and heavy metal pollution in the water has become one of the focuses of the ecological environment. Molybdenum disulfide (MoS2) has excellent adsorption performance because of its extremely high specific surface area and unique active site structure, which has attracted an increasing amount of attention in the field of heavy metal disposal in various types of water. In this paper, two sorts of MoS2 nanoparticles, spherical and lamellar, were synthesized by different chemical methods. Their morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Raman spectrometer. The adsorption properties of two sorts of MoS2 nanoparticles for copper (Ⅱ) ions in water were investigated by changing the pH value, adsorption time, initial concentration of solution, adsorption temperature, etc. Finally, the adsorption mechanism was analyzed by kinetic, isothermal, and thermodynamic models. The results show that two microstructures of MoS2 nanoparticles can be used as efficient adsorption materials for removing heavy metal ions from water, although there are differences in adsorption capacity between them, which expands the theoretical basis of heavy metal adsorption in a water environment.
Collapse
Affiliation(s)
- You-Zhi Yao
- School of Materials Engineering, Wuhu Institute of Technology, 201 Wenjin Rd., Wuhu 241003, China;
| | - Yong-Jie Shi
- School of Energy Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei Economic and Technological Development Zone, Hefei 230601, China;
| | - Kun-Hong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, 99 Jinxiu Avenue, Hefei Economic and Technological Development Zone, Hefei 230601, China;
| |
Collapse
|
7
|
Deng H, Wei W, Yao L, Zheng Z, Li B, Abdelkader A, Deng L. Potential-Mediated Recycling of Copper From Brackish Water by an Electrochemical Copper Pump. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203189. [PMID: 36026564 PMCID: PMC9596855 DOI: 10.1002/advs.202203189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/01/2022] [Indexed: 05/14/2023]
Abstract
Copper ions (Cu2+ ) disposed to the environment at massive scale pose severe threat to human health and waste of resource. Electrochemical deionization (EDI) which captures ions by electrical field is a promising technique for water purification. However, the removal capacity and selectivity toward Cu2+ are unsatisfying, yet the recycling of the captured copper in EDI systems is yet to be explored. Herein, an efficient electrochemical copper pump (ECP) that can deliver Cu2+ from dilute brackish water into much more concentrated solutions is constructed using carbon nanosheets for the first time, which works based on reversible electrosorption and electrodeposition. The trade-off between the removal capacity and reversibility is mediated by the operation voltage. The ECP exhibits a removal capacity of 702.5 mg g-1 toward Cu2+ and a high selectivity coefficient of 64 for Cu2+ /Na+ in the presence of multiple cations; both are the highest reported to date. The energy consumption of 1.79 Wh g-1 is among the lowest for EDI of copper. More importantly, the Cu species captured can be released into a 20-fold higher concentrated solution. Such a high performance is attributed to the optimal potential distribution between the two electrodes that allows reversible electrodeposition and efficient electrosorption.
Collapse
Affiliation(s)
- Hai Deng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Wenfei Wei
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060P. R. China
- Shenzhen Key Laboratory of Special Functional MaterialsShenzhen EngineeringLaboratory for Advanced Technology of CeramicsGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional MaterialsShenzhen EngineeringLaboratory for Advanced Technology of CeramicsGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Zijian Zheng
- Institute of Textiles and ClothingResearch Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHong Kong SARP. R. China
| | - Bei Li
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjing210037P. R. China
| | - Amr Abdelkader
- Department of Design and EngineeringFaculty of Science & TechnologyBournemouth UniversityPooleDorsetBH12 5BBUK
| | - Libo Deng
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
8
|
Liu D, Xu S, Cai Y, Wang Y, Guo J, Li Y. A coupling technology of capacitive deionization and carbon-supported petal-like VS2 composite for effective and selective adsorption of lead (II) ions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Cai Y, Wang Y, Zhang L, Fang R, Wang J. 3D Heterostructure Constructed by Few-Layered MXenes with a MoS 2 Layer as the Shielding Shell for Excellent Hybrid Capacitive Deionization and Enhanced Structural Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2833-2847. [PMID: 34982527 DOI: 10.1021/acsami.1c20531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) layered transition-metal carbides (MXenes) are attractive faradic materials for an efficient capacitive deionization (CDI) process owing to their high capacitance, excellent conductivity, and remarkable ion storage capacity. However, the easy restacking property and spontaneous oxidation in solution by the dissolved oxygen of MXenes greatly restrict their further application in the CDI domain. Herein, a three-dimensional (3D) heterostructure (MoS2@MXene) is rationally designed and constructed, integrating the collective advantages of MXene flakes and MoS2 nanosheets through the hydrothermal method. In such a design, the well-dispersed MXene flakes can effectively reduce the aggregation of MoS2 nanosheets, boost electrical conductivity, and provide efficient charge transfer paths. Furthermore, MoS2 nanosheets as the high-capacity interlayer spacer can prevent the self-restacking of MXene flakes and provide more active sites for ion intercalation. Meanwhile, the strong chemical interactions between MXene flakes and MoS2 nanosheets contribute to accelerating the charge transfer kinetics and enhancing structural stability. Consequently, the resulting MoS2@MXene heterostructure electrode possesses high specific capacitance (171.4 F g-1), fast charge transfer and permeation rate, abundant Na+ diffusion channels, and superior electrochemical stability. Moreover, the hybrid CDI cell (AC//MoS2@MXene) with AC as the anode and MoS2@MXene as the cathode delivers outstanding desalination capacity (35.6 mg g-1), rapid desalination rate (2.6 mg g-1 min-1), excellent charge efficiency (90.2%), and good cyclic stability (96% retention rate). Most importantly, the MoS2@MXene electrode can keep good structural integrity after the long-term repeated desalination process due to the effective shielding effect of the MoS2 layer to protect MXenes from being further oxidized. This work presents the flexible structural engineering to realize excellent ion transfer and storage process by constructing the 3D heterostructure.
Collapse
Affiliation(s)
- Yanmeng Cai
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yue Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Le Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Rongli Fang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Chemical Engineering, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
Nguyen TKA, Kuncoro EP, Doong RA. Manganese ferrite decorated N-doped polyacrylonitrile-based carbon nanofiber for the enhanced capacitive deionization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Liu Y, Du X, Wang Z, Wang L, Liu Z, Shi W, Zheng R, Dou X, Zhu H, Yuan X. Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization. J Colloid Interface Sci 2021; 609:289-296. [PMID: 34896829 DOI: 10.1016/j.jcis.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Slow desalination kinetics and poor durability of the electrodes are two key limitations of electrochemical deionization (EDI) that are considered to be the next generation of capacitive desalination (CDI). Herein, we report the design of a high-efficiency chloride removal electrode material for accelerating the desalination kinetics and concurrently improving the durability of EDI, which is based on coating NiMn-Cl layered double hydroxides (LDHs) on the surface of electrospun carbon nanofibers (CNFs@LDHs). The salient features of the as-developed CNFs@LDHs are that applying layer-structured LDHs with abundant redox-active sites to accelerate the pseudo-capacitive ion storage via fast ion intercalation/deintercalation, and leveraging the rigid CNF backbone to strengthen its durability by preventing the potential aggregation of LDHs. As expected, the CNFs@LDH based EDI system displays an ultrafast desalination rate of 0.51 mg g-1 s-1 and outstanding long-term stability (only 10.66 % desalination capacity reduction after 35 cycles), which is achieved without sacrificing its excellent desalination capacity (72.04 mg g-1). This work could be inspirational for the future design of ultrafast yet durable EDI approaching industrial desalination applications.
Collapse
Affiliation(s)
- Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Lihao Wang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zizhen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenxue Shi
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Runzhe Zheng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
12
|
Wang K, Du X, Liu Z, Geng B, Shi W, Liu Y, Dou X, Zhu H, Pan L, Yuan X. Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization. J Colloid Interface Sci 2021; 608:2752-2759. [PMID: 34785052 DOI: 10.1016/j.jcis.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Rocking-chair capacitive deionization (RCDI), as the next generation technique of capacitive deionization, has thrived to be one of the most promising strategies in the desalination community, yet was hindered mostly by its relatively low desalination rate and stability. Motivated by the goal of simultaneously enhancing the desalination rate and structural stability of the electrode, this paper reports an anion-driven flow-through RCDI (AFT-RCDI) system equipped with BiOCl nanostructure coated carbon sponge (CS@BiOCl for short; its backbone is derived from commercially available melamine foam with minimum capital cost) as the flow-through electrode. Owning to the rational design of the composite electrode material with minimum charge transfer resistance and ultrahigh structure stability as well as the superior flow-through cell architecture, the AFT-RCDI displays excellent desalination performance (desalination capacity up to 107.33 mg g-1; desalination rate up to 0.53 mg g-1s-1) with superior long-term stability (91.75% desalination capacity remained after 30 cycles). This work provides a new thought of coupling anion capturing electrode with flow-through cell architecture and employing a low-cost CS@BiOCl electrode with commercially available backbone material, which could shed light on the further development of low-cost electrochemical desalination systems.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zizhen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Bo Geng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenxue Shi
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
13
|
Zhao M, Zhao Z, Ma X, Zhao J, Ye M, Wen X. Carbon-embedded hierarchical and dual-anion C@MoSP heterostructure for efficient capacitive deionization of saline water. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Enhanced capacitive deionization of defect-containing MoS2/graphene composites through introducing appropriate MoS2 defect. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
A win-win strategy of β-cyclodextrin and ion-doped polypyrrole composite nanomaterials for asymmetric capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Xi W, Zhai J, Tian L, Zhou S, Zhang Z. Curcumin-Cu2+ complex generated on carbon nanotubes for electrocatalytic application toward electrooxidation of hydroxylamine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wang G, Yan T, Zhang J, Shi L, Zhang D. Trace-Fe-Enhanced Capacitive Deionization of Saline Water by Boosting Electron Transfer of Electro-Adsorption Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8411-8419. [PMID: 32453947 DOI: 10.1021/acs.est.0c01518] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capacitive deionization (CDI) is a promising water purification technology. However, the current ion adsorption capacity of CDI electrode materials is still an issue, which cannot meet the rapid demand of clean water from saline water. Herein, trace-Fe-enhanced removal of ions from saline water via CDI is presented. The ion adsorption capacity of CDI electrodes is up to 36.25 mg g-1 in a 500 mg L-1 NaCl media at 1.2 V together with stable regeneration property. In situ Raman and ex situ XPS measurements unravel the removal mechanism of ions from saline water, and the reinforced adsorption of ions is due to the introduction of trace Fe boosting electron transfer of electro-adsorption sites during the CDI process. This work presents a promising solution to highly efficient capacitive deionization for saline water.
Collapse
Affiliation(s)
- Guizhi Wang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Tingting Yan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jianping Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liyi Shi
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| |
Collapse
|