1
|
Arabzadeh Nosratabad N, Jin Z, Arabzadeh H, Chen B, Huang C, Mattoussi H. Molar excess of coordinating N-heterocyclic carbene ligands triggers kinetic digestion of gold nanocrystals. Dalton Trans 2024; 53:467-483. [PMID: 38078852 DOI: 10.1039/d3dt02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
There has been much interest in evaluating the strength of the coordination interactions between N-heterocyclic carbene (NHC) molecules and transition metal ions, nanocolloids and surfaces. We implement a top-down core digestion test of Au nanoparticles (AuNPs) triggered by incubation with a large molar excess of poly(ethylene glycol)-appended NHC molecules, where kinetic dislodging of surface atoms and formation of NHC-Au complexes progressively take place. We characterize the structure and chemical nature of the generated PEG-NHC-Au complexes using 1D and 2D 1H-13C NMR spectroscopy, supplemented with matrix assisted laser desorption/ionization mass spectrometry, and transmission electron microscopy. We further apply the same test using thiol-modified molecules and find that though etching can be measured the kinetics are substantially slower. We discuss our findings within the classic digestion of transition metal ores and colloids induced by interactions with sodium cyanide, which provides an insight into the strength of coordination between the strong σ-donating (soft Lewis base) NHC and Au surfaces (having a soft Lewis acid character), as compared to gold-to-gold covalent binding.
Collapse
Affiliation(s)
- Neda Arabzadeh Nosratabad
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Zhicheng Jin
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Hesam Arabzadeh
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Banghao Chen
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| | - Cheng Huang
- Florida State University, Department of Scientific Computing, Tallahassee, FL 32306, USA
| | - Hedi Mattoussi
- Florida State University, Department of Chemistry and Biochemistry, 95 Chieftan Way, Tallahassee, FL 32306, USA.
| |
Collapse
|
2
|
Pallavicini P, Preti L, Protopapa ML, Carbone D, Capodieci L, Diaz Fernandez YA, Milanese C, Taglietti A, Doveri L. Nanoparticle-Imprinted Silica Gel for the Size-Selective Capture of Silver Ultrafine Nanoparticles from Water. Molecules 2023; 28:molecules28104026. [PMID: 37241766 DOI: 10.3390/molecules28104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A synthetic approach has been developed to prepare silica gel monoliths that embed well separated silver or gold spherical nanoparticles (NP), with diameters of 8, 18 and 115 nm. Fe3+, O2/cysteine and HNO3 were all successfully used to oxidize and remove silver NP from silica, while aqua regia was necessary for gold NP. In all cases, NP-imprinted silica gel materials were obtained, with spherical voids of the same dimensions of the dissolved particles. By grinding the monoliths, we prepared NP-imprinted silica powders that were able to efficiently reuptake silver ultrafine NP (Ag-ufNP, d = 8 nm) from aqueous solutions. Moreover, the NP-imprinted silica powders showed a remarkable size selectivity, based on the best match between NP radius and the curvature radius of the cavities, driven by the optimization of attractive Van der Waals forces between SiO2 and NP. Ag-ufNP are increasingly used in products, goods, medical devices, disinfectants, and their consequent diffusion in the environment is of rising concern. Although limited here to a proof-of-concept level, the materials and methods described in this paper may be an efficient solution for capturing Ag-ufNP from environmental waters and to safely dispose them.
Collapse
Affiliation(s)
| | - Luca Preti
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Maria L Protopapa
- ENEA-Italian National Agency for New Technologies, Energy and the Sustainable Economic Development, Division Sustainable Materials-Brindisi Research Center, S.S. 7 Appia km. 706, 72100 Brindisi, Italy
| | - Daniela Carbone
- ENEA-Italian National Agency for New Technologies, Energy and the Sustainable Economic Development, Division Sustainable Materials-Brindisi Research Center, S.S. 7 Appia km. 706, 72100 Brindisi, Italy
| | - Laura Capodieci
- ENEA-Italian National Agency for New Technologies, Energy and the Sustainable Economic Development, Division Sustainable Materials-Brindisi Research Center, S.S. 7 Appia km. 706, 72100 Brindisi, Italy
| | | | - Chiara Milanese
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Angelo Taglietti
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Lavinia Doveri
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Kose O, Mantecca P, Costa A, Carrière M. Putative adverse outcome pathways for silver nanoparticle toxicity on mammalian male reproductive system: a literature review. Part Fibre Toxicol 2023; 20:1. [PMID: 36604752 PMCID: PMC9814206 DOI: 10.1186/s12989-022-00511-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adverse outcome pathways (AOPs) are conceptual frameworks that organize knowledge about biological interactions and toxicity mechanisms. They present a sequence of events commencing with initial interaction(s) of a stressor, which defines the perturbation in a biological system (molecular initiating event, MIE), and a dependent series of key events (KEs), ending with an adverse outcome (AO). AOPs have recently become the subject of intense studies in a view to better understand the mechanisms of nanomaterial (NM) toxicity. Silver nanoparticles (Ag NPs) are one of the most explored nanostructures and are extensively used in various application. This, in turn, has increased the potential for interactions of Ag NPs with environments, and toxicity to human health. The aim of this study was to construct a putative AOPs (pAOP) related to reproductive toxicity of Ag NPs, in order to lay the groundwork for a better comprehension of mechanisms affecting both undesired toxicity (against human cell) and expected toxicity (against microorganisms). METHODS PubMed and Scopus were systematically searched for peer-reviewed studies examining reproductive toxicity potential of Ag NPs. The quality of selected studies was assessed through ToxRTool. Eventually, forty-eight studies published between 2005 and 2022 were selected to identify the mechanisms of Ag NPs impact on reproductive function in human male. The biological endpoints, measurements, and results were extracted from these studies. Where possible, endpoints were assigned to a potential KE and an AO using expert judgment. Then, KEs were classified at each major level of biological organization. RESULTS We identified the impairment of intracellular SH-containing biomolecules, which are major cellular antioxidants, as a putative MIE, with subsequent KEs defined as ROS accumulation, mitochondrial damage, DNA damage and lipid peroxidation, apoptosis, reduced production of reproductive hormones and reduced quality of sperm. These successive KEs may result in impaired male fertility (AO). CONCLUSION This research recapitulates and schematically represents complex literature data gathered from different biological levels and propose a pAOP related to the reproductive toxicity induced by AgNPs. The development of AOPs specific to NMs should be encouraged in order to provide new insights to gain a better understanding of NP toxicity.
Collapse
Affiliation(s)
- Ozge Kose
- grid.457348.90000 0004 0630 1517Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, 38000 Grenoble, France
| | - Paride Mantecca
- grid.7563.70000 0001 2174 1754Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Anna Costa
- grid.5326.20000 0001 1940 4177CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, 38000, Grenoble, France.
| |
Collapse
|
4
|
Shen M, Pan T, Ning J, Sun F, Deng M, Liao J, Su F, Tian Y. New nanostructured extracellular potassium ion probe for assay of cellular K + transport. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121435. [PMID: 35653810 DOI: 10.1016/j.saa.2022.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The concentration of potassium ion is an important indicator for human health, and its abnormality is often accompanied by various diseases. However, most tools currently used to study potassium ion transport are low throughput. Herein, we reported a new K+ fluorescent nanoprobe CP1-KS with high selectivity and sensitivity to K+ (fluorescence enhanced factor was up to 9.91 at 20 mM K+). The polymeric fluorescent probe CP1-KS was composed of the small-molecular K+ indicator KS and amphiphilic copolymer CP1. This sensor can be easily and uniformly dispersed in cell culture medium and is suitable for high throughput analysis. To assess the utility of the probe CP1-KS in biological field, this probe was employed as an extracellular fluorescent probe to monitor the efflux of K+ from cells (E coli, B. Subtilis 168, Hela and MCF-7 cells) under various stimulation including lysozyme, nigericin, digitonin, and ATP. Results demonstrated that CP1-KS is an effective analysis tool for extracellular K+ concentration. We believe that the nanoprobe has great potential in antibacterial drug screening, K+ ionophore function, K+ channel activity, cell membrane permeability analysis or other K+ related field in the future.
Collapse
Affiliation(s)
- Min Shen
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Tingting Pan
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China
| | - Juewei Ning
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Fangyuan Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Mengyu Deng
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Jianxiang Liao
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen 518038, China
| | - Fengyu Su
- Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
5
|
Mbanga O, Cukrowska E, Gulumian M. Dissolution kinetics of silver nanoparticles: Behaviour in simulated biological fluids and synthetic environmental media. Toxicol Rep 2022; 9:788-796. [DOI: 10.1016/j.toxrep.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
|
6
|
Lin X, Tian M, Cao C, Shu T, Wang J, Wen Y, Su L, Zhang X. Strongly phosphorescent and water-soluble gold(I)-silver(I)-cysteine nanoplatelets via versatile small biomolecule cysteine-assisted synthesis for intracellular hypochlorite detection. Biosens Bioelectron 2021; 193:113571. [PMID: 34425519 DOI: 10.1016/j.bios.2021.113571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 12/09/2022]
Abstract
In biological systems, abnormal levels of hypochlorite (ClO-) could result in cell dysfunctions. Herein, we report a facile, one-step and green approach based on the versatile small biomolecule cysteine both serving as reducing agent and ligand for synthesizing the strongly photoluminencent and water-soluble Au(I)-Ag(I)-cysteine complexes nanoplatelets (Au(I)-Ag(I)-Cys nanoplatelets) for intracellular hypochlorite detection. Multiple spectroscopic and microscopical tools have been used to characterize the resultant Au(I)-Ag(I)-Cys nanoplatelets. It was found that with the cysteine-assisted synthesis approach, the Ag(I) doping to the Au(I) complexes could form the supramolecular organometallic nanoplatelets. Inside, the Au(I)-Ag(I) metallophilic interactions showing an Au to Ag charge transfer property were formed, thereby enhancing the photoluminescence (PL) intensity via the charge transfer from the bioligand's S to the metal-metal center. The quantum yield (QY) was measured to show a maximum 16-fold enhancement (i.e., from 0.85 to 13.8%). Interestingly, in the presence of ClO-, the metal-thiolate ligand structure of the as-synthesized Au(I)-Ag(I)-Cys nanoplatelets could be oxidatively damaged, causing the PL quenching, thereby producing the effect of biorecognition towards ClO- anions. The ClO--induced PL quenching produced two linear regions at ClO- concentrations of 0.01-5.0 μM and 5.0-1000 μM with a limit of detection (LOD) of 8.0 nM (S/N = 3). The ClO--induced PL quenching was specific over the other typical reactive oxygen species (ROS) and the potential interfering substances in biological samples. In addition, the Au(I)-Ag(I)-Cys nanoplatelets had good biocompatibility. Thus, they could be further developed as a biosensor for detecting endogenous ClO- anions in living cells.
Collapse
Affiliation(s)
- Xiangfang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Meng Tian
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Chengcheng Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tong Shu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, PR China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
7
|
Wahab MA, Luming L, Matin MA, Karim MR, Aijaz MO, Alharbi HF, Abdala A, Haque R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers (Basel) 2021; 13:2870. [PMID: 34502910 PMCID: PMC8433914 DOI: 10.3390/polym13172870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Silver has become a potent agent that can be effectively applied in nanostructured nanomaterials with various shapes and sizes against antibacterial applications. Silver nanoparticle (Ag NP) based-antimicrobial agents play a major role in different applications, including biomedical applications, as surface treatment and coatings, in chemical and food industries, and for agricultural productivity. Due to advancements in nanoscience and nanotechnology, different methods have been used to prepare Ag NPs with sizes and shapes reducing toxicity for antibacterial applications. Studies have shown that Ag NPs are largely dependent on basic structural parameters, such as size, shape, and chemical composition, which play a significant role in preparing the appropriate formulation for the desired applications. Therefore, this review focuses on the important parameters that affect the surface interaction/state of Ag NPs and their influence on antimicrobial activities, which are essential for designing future applications. The mode of action of Ag NPs as antibacterial agents will also be discussed.
Collapse
Affiliation(s)
- Md Abdul Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| | - Li Luming
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Md Abdul Matin
- Department of Pharmacy, NUB School of Health Sciences, Northern University Bangladesh, Globe Center, 24 Mirpur Road, Dhaka 1205, Bangladesh;
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Mohammad Omer Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
| | - Hamad Fahad Alharbi
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha POB 23874, Qatar;
| | - Rezwanul Haque
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| |
Collapse
|
8
|
PVA Films with Mixed Silver Nanoparticles and Gold Nanostars for Intrinsic and Photothermal Antibacterial Action. NANOMATERIALS 2021; 11:nano11061387. [PMID: 34070273 PMCID: PMC8225135 DOI: 10.3390/nano11061387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
PVA films with embedded either silver nanoparticles (AgNP), NIR-absorbing photothermal gold nanostars (GNS), or mixed AgNP+GNS were prepared in this research. The optimal conditions to obtain stable AgNP+GNS films with intact, long lasting photothermal GNS were obtained. These require coating of GNS with a thiolated polyethylene glycol (PEG) terminated with a carboxylic acid function, acting as reticulant in the film formation. In the mixed AgNP+GNS films, the total noble metal content is <0.15% w/w and in the Ag films < 0.025% w/w. The slow but prolonged Ag+ release from film-embedded AgNP (8–11% of total Ag released after 24 h, in the mixed films) results in a very strong microbicidal effect against planktonic Escherichia coli and Staphylococcus aureus bacterial strains (the release of Au from films is instead negligible). Beside this intrinsic effect, the mixed films also exert an on-demand, fast hyperthermal bactericidal action, switched on by NIR laser irradiation (800 nm, i.e., inside the biotransparent window) of the localized surface plasmon resonance (LSPR) absorption bands of GNS. Temperature increases of 30 °C are obtained using irradiances as low as 0.27 W/cm2. Moreover, 80–90% death on both strains was observed in bacteria in contact with the GNS-containing films, after 30 min of irradiation. Finally, the biocompatibility of all films was verified on human fibroblasts, finding negligible viability decrease in all cases.
Collapse
|
9
|
Nguyen DD, Lue SJ, Lai JY. Tailoring therapeutic properties of silver nanoparticles for effective bacterial keratitis treatment. Colloids Surf B Biointerfaces 2021; 205:111856. [PMID: 34022702 DOI: 10.1016/j.colsurfb.2021.111856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/17/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Abstract
The formulation of nanoparticles with intrinsically therapeutic properties in a tailorable and appropriate manner is critical in nanomedicine for effective treatments of infectious diseases. Here, we present a biomedical strategy to formulate silver nanoparticles (AgNPs) as intrinsically therapeutic agents for the treatment of Staphylococcus aureus (S. aureus) keratitis. Specifically, AgNPs are controllably obtained as spheres, wrapped with a biopolymer, and varied in sizes. in vitro and in vivo studies indicate that biological interactions between the AgNPs and corneal keratocytes, S. aureus bacteria, and blood vessels are strongly determined by the particle sizes. As the size increased from 3.3 ± 0.7 to 37.2 ± 5.3 nm, the AgNPs exhibit better ocular biocompatibility and stronger antiangiogenic activity, but poorer bactericidal performance. In a rabbit model of S. Aureus-induced keratitis, intrastromal injection of AgNP formulations (single dose) show substantial influences of particle size on the treatment efficacy. As the trade-off, AgNPs with medium size of 15.0 ± 3.6 nm reveal as the best therapeutic agent that could offer ∼5.6 and ∼9.1-fold greater corneal thickness recovery respectively compared to those with smaller and larger sizes at 3 days post-administration. These findings suggest an important advance in structural design for formulating intrinsically therapeutic nano-agents toward the efficient management of infectious diseases.
Collapse
Affiliation(s)
- Duc Dung Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Division of Joint Reconstruction, Department of Orthopedics, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Jui-Yang Lai
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| |
Collapse
|
10
|
Quevedo AC, Lynch I, Valsami-Jones E. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. NANOSCALE 2021; 13:6142-6161. [PMID: 33734251 DOI: 10.1039/d0nr09024g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell death is the process that regulates homeostasis and biochemical changes in healthy cells. Silver nanoparticles (AgNPs) act as powerful cell death inducers through the disruption of cellular signalling functions. In this study, embryonic zebrafish cells (ZF4) were used as a potential early-stage aquatic model to evaluate the molecular and cell death mechanisms implicated in the toxicity of AgNPs and Ag+. Here, a low, medium, and high concentration (2.5, 5, and 10 μg mL-1) of three different sizes of AgNPs (10, 30 and 100 nm) and ionic Ag+ (1, 1.5 and 2 μg mL-1) were used to investigate whether the size of the nanomaterial, ionic form, and mass concentration were related to the activation of particular cell death mechanisms and/or induction of different signalling pathways. Changes in the physicochemical properties of the AgNPs were also assessed in the presence of complex medium (cell culture) and reference testing medium (ultra-pure water). Results demonstrated that AgNPs underwent dissolution, as well as changes in hydrodynamic size, zeta potential and polydispersity index in both tested media depending on particle size and concentration. Similarly, exposure dose played a key role in regulating the different cell death modalities (apoptosis, necrosis, autophagy), and the signalling pathways (repair mechanisms) in cells that were activated in the attempt to overcome the induced damage. This study contributes to the 3Rs initiative to replace, reduce and refine animal experimentation through the use of alternative models for nanomaterials assessment.
Collapse
Affiliation(s)
- Ana C Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, Edgbaston, UK.
| | | | | |
Collapse
|
11
|
Amendola V, Guadagnini A, Agnoli S, Badocco D, Pastore P, Fracasso G, Gerosa M, Vurro F, Busato A, Marzola P. Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents. J Colloid Interface Sci 2021; 596:332-341. [PMID: 33839358 DOI: 10.1016/j.jcis.2021.03.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM-1s-1, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy.
| | - Andrea Guadagnini
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | | | - Marco Gerosa
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Federica Vurro
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona 37134, Italy.
| |
Collapse
|
12
|
Wahab MA, Li L, Li H, Abdala A. Silver Nanoparticle-Based Nanocomposites for Combating Infectious Pathogens: Recent Advances and Future Prospects. NANOMATERIALS 2021; 11:nano11030581. [PMID: 33652693 PMCID: PMC7996865 DOI: 10.3390/nano11030581] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Silver nanoparticles (Ag NPs) and their nanocomposites with polymers are potent agents for antibacterial and disinfectant applications. The structural parameters of Ag-NPs, such as size, shape, and surface area, are very critical for developing appropriate formulations for the targeted applications. The impact of these factors on the performance of Ag NPs is analyzed. Ag NPs with a broad spectrum of antibacterial activities have already found applications in wound and burn dressing, food preservation, agricultural ponds, treatment for infected areas, coatings, water treatment, and other biomedical applications. Ag NPs are quite useful against antibiotic-resistant bacteria, but their level of toxicity needs careful investigation as their toxicity could be very harmful to human health and the environment. This review discusses the challenges and prospects of various Ag NPs and their composites. The review will enrich the knowledge about the efficiency and mechanism of various Ag nanoparticle-based antibacterial agents.
Collapse
Affiliation(s)
- Md A. Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (L.L.); (H.L.)
- Correspondence: or (M.A.W.); (A.A.)
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (L.L.); (H.L.)
| | - Hongmei Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (L.L.); (H.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha POB 23874, Qatar
- Correspondence: or (M.A.W.); (A.A.)
| |
Collapse
|
13
|
Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Tiznado H, Ovalle-Marroquin M, Soto-Ramos AG, Blanco A, Rodríguez JA, Romo OA, Chávez-Almazán LA, Susarrey-Arce A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep 2020; 10:12805. [PMID: 32732959 PMCID: PMC7393152 DOI: 10.1038/s41598-020-69606-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/15/2020] [Indexed: 01/01/2023] Open
Abstract
The scientific community is exploiting the use of silver nanoparticles (AgNPs) in nanomedicine and other AgNPs combination like with biomaterials to reduce microbial contamination. In the field of nanomedicine and biomaterials, AgNPs are used as an antimicrobial agent. One of the most effective approaches for the production of AgNPs is green synthesis. Lysiloma acapulcensis (L. acapulcensis) is a perennial tree used in traditional medicine in Mexico. This tree contains abundant antimicrobial compounds. In the context of antimicrobial activity, the use of L. acapulcensis extracts can reduce silver to AgNPs and enhance its antimicrobial activity. In this work, we demonstrate such antimicrobial activity effect employing green synthesized AgNPs with L. acapulcensis. The FTIR and LC-MS results showed the presence of chemical groups that could act as either (i) reducing agents stabilizing the AgNPs or (ii) antimicrobial capping agents enhancing antimicrobial properties of AgNPs. The synthesized AgNPs with L. acapulcensis were crystalline with a spherical and quasi-spherical shape with diameters from 1.2 to 62 nm with an average size diameter of 5 nm. The disk diffusion method shows the magnitude of the susceptibility over four pathogenic microorganisms of clinical interest. The antimicrobial potency obtained was as follows: E. coli ≥ S. aureus ≥ P. aeruginosa > C. albicans. The results showed that green synthesized (biogenic) AgNPs possess higher antimicrobial potency than chemically produced AgNPs. The obtained results confirm a more significant antimicrobial effect of the biogenic AgNPs maintaining low-cytotoxicity than the AgNPs produced chemically.
Collapse
Affiliation(s)
- Diana Garibo
- Cátedras Conacyt-Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Departamento de Microbiología, Ensenada, Baja California, México. .,Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México.
| | - Hugo A Borbón-Nuñez
- Cátedras Conacyt-Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, México
| | - Jorge N Díaz de León
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Ernesto García Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Iván Estrada
- Cátedras Conacyt-Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Departamento de Ingeniería de Materiales y Química, Chihuahua, México
| | - Yanis Toledano-Magaña
- Universidad Autónoma de Baja California (UABC), Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada, México
| | - Hugo Tiznado
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Marcela Ovalle-Marroquin
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | | | - Alberto Blanco
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - José A Rodríguez
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Oscar A Romo
- Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología, Ensenada, Baja California, México
| | - Luis A Chávez-Almazán
- Secretaría de Salud de Guerrero, Banco de Sangre Regional Zona Centro, Chilpancingo de los Bravo, Guerrero, México
| | - Arturo Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| |
Collapse
|
14
|
Suitable Polymeric Coatings to Avoid Localized Surface Plasmon Resonance Hybridization in Printed Patterns of Photothermally Responsive Gold Nanoinks. Molecules 2020; 25:molecules25112499. [PMID: 32471310 PMCID: PMC7321298 DOI: 10.3390/molecules25112499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
When using gold nanoparticle (AuNP) inks for writing photothermal readable secure information, it is of utmost importance to obtain a sharp and stable shape of the localized surface plasmon resonance (LSPR) absorption bands in the prints. The T increase at a given irradiation wavelength (ΔTλ) is the retrieved information when printed patterns are interrogated with a laser source. As ΔTλ is proportional to the absorbance at the wavelength λ, any enlargement or change of the absorbance peak shape in a printed pattern would lead to wrong or unreliable reading. With the aim of preparing AuNP inks suitable for inkjet printing of patterns with stable and reliable photothermal reading, we prepared liquid solutions of spherical AuNP coated with a series of different polymers and with or without additional dispersant. The optical stability of the inks and of the printed patterns were checked by monitoring the shape changes of the sharp LSPR absorption band of AuNP in the visible (λmax 519 nm) along weeks of ageing. AuNP coated with neutral polyethylenglycol thiols (HS-PEG) of mw 2000–20000 showed a strong tendency to rapidly agglomerate in the dry prints. The close contact between agglomerated AuNP resulted in the loss of the pristine shape of the LSPR band, that flattened and enlarged with the further appearance of a second maximum in the Near IR, due to plasmon hybridization. The tendency to agglomerate was found directly proportional to the PEG mw. Addition of the ethylcellulose (EC) dispersant to inks resulted in an even stronger and faster tendency to LSPR peak shape deformation in the prints due to EC hydrophobicity, that induced AuNP segregation and promoted agglomeration. The introduction of a charge on the AuNP coating revelead to be the correct way to avoid agglomeration and obtain printed patterns with a sharp LSPR absorption band, stable with ageing. While the use of a simple PEG thiol with a terminal negative charge, HS-PEGCOO(−) (mw 3000), was not sufficient, overcoating with the positively charged polyallylamine hydrochloride (PAH) and further overcoating with the negatively charged polystyrene sulfonate (PSS) yielded AuNP@HS-PEGCOO(−)/PAH(+) and AuNP@HS-PEGCOO(−)/PAH(+)/PSS(−), both giving stable prints. With these inks we have shown that it is possible to write photothermally readable secure information. In particular, the generation of reliable three-wavelength photothemal barcodes has been demonstrated.
Collapse
|
15
|
Borzenkov M, Pallavicini P, Taglietti A, D’Alfonso L, Collini M, Chirico G. Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1134-1146. [PMID: 32802716 PMCID: PMC7404213 DOI: 10.3762/bjnano.11.98] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 05/11/2023]
Abstract
Bacterial contamination is a severe issue that affects medical devices, hospital tools and surfaces. When microorganisms adhere to a surface (e.g., medical devices or implants) they can develop into a biofilm, thereby becoming more resistant to conventional biocides and disinfectants. Nanoparticles can be used as an antibacterial agent in medical instruments or as a protective coating in implantable devices. In particular, attention is being drawn to photothermally active nanoparticles that are capable of converting absorbed light into heat. These nanoparticles can efficiently eradicate bacteria and biofilms upon light activation (predominantly near the infrared to near-infrared spectral region) due a rapid and pronounced local temperature increase. By using this approach new, protective, antibacterial surfaces and materials can be developed that can be remotely activated on demand. In this review, we summarize the state-of-the art regarding the application of various photothermally active nanoparticles and their corresponding nanocomposites for the light-triggered eradication of bacteria and biofilms.
Collapse
Affiliation(s)
- Mykola Borzenkov
- Department of Medicine and Surgery, Nanomedicine Center, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | | | - Angelo Taglietti
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Laura D’Alfonso
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | - Maddalena Collini
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| | - Giuseppe Chirico
- Department of Physics, University of Milano-Bicocca, piazza dell’Ateneo Nuovo, 20126, Milan, Italy
| |
Collapse
|