1
|
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev 2024; 53:3002-3035. [PMID: 38353930 DOI: 10.1039/d3cs00205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Hermenegildo Garcia
- Departamento de Química/Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
2
|
Xu Y, Lai W, Cui X, Zheng D, Wang S, Fang Y. Controlled crystal facet of tungsten trioxide photoanode to improve on-demand hydrogen peroxide production for in-situ tetracycline degradation. J Colloid Interface Sci 2024; 655:822-829. [PMID: 37979288 DOI: 10.1016/j.jcis.2023.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Advanced oxidation processes utilizing hydrogen peroxide (H2O2) are widely employed for the treatment of organic pollutions. However, the conventional anthraquinone method for H2O2 synthesis is unsuitable for this application owing to its hazardous and costly nature. Alternative approaches involve a photoelectrochemical method. Herein, tungsten trioxide (WO3) photoanode has been used for the conversion of H2O into H2O2 through oxidation reaction from a PEC system, simultaneously utilizing in-situ generated hydroxyl (OH•) radicals for tetracycline degradation. By manipulating the ratio of crystal facets between (020) and (200) of the WO3 photoanode, a significant improvement in H2O2 production has been achieved by increasing the proportion of (020) facet. The production rate of WO3 photoanode enriched with the (020) facet is approximately 1.9 times higher than that enriched with (200) facet. This enhanced H2O2 production performance can be attributed to the improved formation of OH• radicals and the accelerated desorption of H2O2 on the (020) facet. Simultaneously, the in-situ generated OH• radicals are applied for tetracycline degradation. Under illumination of sunlight stimulator for 180 min, the optimal photoanode achieves a degradation rate of 86.7% for tetracycline. Furthermore, the resulting chemicals have been analyzed, revealing that C8H10O and C7H8O were formed as the primary products. Notably, these products exhibit significantly lower toxicity compared to tetracycline. This study presents a promising approach for the rational design of WO3 based photoanodes for oxidation reaction, including not only H2O2 production but also the efficient degradation of organic pollutants.
Collapse
Affiliation(s)
- Yuntao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Wei Lai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoqi Cui
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Dandan Zheng
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, PR China.
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
3
|
Zhang Y, Yu H, Zhai R, Zhang J, Gao C, Qi K, Yang L, Ma Q. Recent Progress in Photocatalytic Degradation of Water Pollution by Bismuth Tungstate. Molecules 2023; 28:8011. [PMID: 38138501 PMCID: PMC10745909 DOI: 10.3390/molecules28248011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Photocatalysis has emerged as a highly promising, green, and efficient technology for degrading pollutants in wastewater. Among the various photocatalysts, Bismuth tungstate (Bi2WO6) has gained significant attention in the research community due to its potential in environmental remediation and photocatalytic energy conversion. However, the limited light absorption ability and rapid recombination of photogenerated carriers hinder the further improvement of Bi2WO6's photocatalytic performance. This review aims to present recent advancements in the development of Bi2WO6-based photocatalysts. It delves into the photocatalytic mechanism of Bi2WO6 and summarizes the achieved photocatalytic characteristics by controlling its morphology, employing metal and non-metal doping, constructing semiconductor heterojunctions, and implementing defective engineering. Additionally, this review explores the practical applications of these modified Bi2WO6 photocatalysts in wastewater purification. Furthermore, this review addresses existing challenges and suggests prospects for the development of efficient Bi2WO6 photocatalysts. It is hoped that this comprehensive review will serve as a valuable reference and guide for researchers seeking to advance the field of Bi2WO6 photocatalysis.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
- Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali University, Dali 671000, China
| | - Huijuan Yu
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Ruiqi Zhai
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Jing Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Cuiping Gao
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| | - Li Yang
- College of International Education, Dali University, Dali 671000, China;
| | - Qiang Ma
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Harun-Ur-Rashid M, Pal K, Imran AB. Hybrid Nanocomposite Fabrication of Nanocatalyst with Enhanced and Stable Photocatalytic Activity. Top Catal 2023. [DOI: 10.1007/s11244-023-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
5
|
Noureen L, Wang Q, Humayun M, Shah WA, Xu Q, Wang X. Recent advances in structural engineering of photocatalysts for environmental remediation. ENVIRONMENTAL RESEARCH 2023; 219:115084. [PMID: 36535396 DOI: 10.1016/j.envres.2022.115084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalysis appears to be an appealing approach for environmental remediation including pollutants degradation in water, air, and/or soil, due to the utilization of renewable and sustainable source of energy, i.e., solar energy. However, their broad applications remain lagging due to the challenges in pollutant degradation efficiency, large-scale catalyst production, and stability. In recent decades, massive efforts have been devoted to advance the photocatalysis technology for improved environmental remediation. In this review, the latest progress in this aspect is overviewed, particularly, the strategies for improved light sensitivity, charge separation, and hybrid approaches. We also emphasize the low efficiency and poor stability issues with the current photocatalytic systems. Finally, we provide future suggestions to further enhance the photocatalyst performance and lower its large-scale production cost. This review aims to provide valuable insights into the fundamental science and technical engineering of photocatalysis in environmental remediation.
Collapse
Affiliation(s)
- Laila Noureen
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Muhammad Humayun
- School of Optical and Electronics Information, Wuhan National Laboratory for Optoelectronic, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Qiyong Xu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Preparation of ZnCo2O4/BiVO4 Z-Scheme heterostructures to enhance photocatalytic performance in organic pollutant and antibiotic removal. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chen M, Ye Z, Wei L, Yuan J, Xiao L. Shining at the Tips: Anisotropic Deposition of Pt Nanoparticles Boosting Hot Carrier Utilization for Plasmon-Driven Photocatalysis. J Am Chem Soc 2022; 144:12842-12849. [PMID: 35802866 DOI: 10.1021/jacs.2c04202] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bimetallic nanostructures are a promising candidate for plasmon-driven photocatalysis. However, knowledge on the generation and utilization of hot carriers in bimetallic nanostructures is still limited. In this work, we explored Pt position-dependent photocatalytic properties of bimetallic Au nanobipyramids (Au NBPs) with single-molecule fluorescence imaging. Compared with all-deposited core-shell nanostructures (aPt-Au NBPs), single-molecule imaging and simulation results show that the end-deposited bimetallic nanostructures (ePt-Au NBPs) can maintain a strong electromagnetic (EM) field and further promote the generation and transfer of energetic hot electrons for photocatalysis. Even though the Pt lattice is more stable than Au, the strong EM field at the sharp tips can boost lattice vibration, where enhanced spontaneous surface restructuring for active reaction site generation takes place. Significantly enhanced catalytic efficiency from ePt-Au NBPs is observed in contrast to that of Au NBPs and aPt-Au NBPs. These microscopic evidences offer valuable guidelines to design plasmon-based photocatalysts, particularly for bimetallic nanostructures.
Collapse
Affiliation(s)
- Mengtian Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongju Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Wei
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
0D/1D BiVO4/CdS Z-scheme nanoarchitecture for efficient photocatalytic environmental remediation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Maheskumar V, Lin YM, Jiang Z, Vidhya B, Ghosal A. New insights into the structural, optical, electronic and photocatalytic properties of sulfur doped bulk BiVO4 and surface BiVO4 on {0 1 0} and {1 1 0} via a collective theoretical and experimental investigation. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Current status on designing of dual Z-scheme photocatalysts for energy and environmental applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Xing Y, Cheng J, Li H, Lin D, Wang Y, Wu H, Pan W. Electrospun Ceramic Nanofibers for Photocatalysis. NANOMATERIALS 2021; 11:nano11123221. [PMID: 34947570 PMCID: PMC8707833 DOI: 10.3390/nano11123221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Ceramic fiber photocatalysts fabricated by electrospinning hold great potential in alleviating global environmental and energy issues. However, many challenges remain in improving their photocatalytic efficiencies, such as the limited carrier lifetime and solar energy utilization. To overcome these predicaments, various smart strategies have been invented and realized in ceramic fiber photocatalysts. This review firstly attempts to summarize the fundamental principles and bottlenecks of photocatalytic processes. Subsequently, the approaches of doping, surface plasmon resonance, and up-conversion fluorescent to enlarge the light absorption range realized by precursor composition design, electrospinning parameter control, and proper post heat-treatment process are systematically introduced. Furthermore, methods and achievements of prolonging the lifetime of photogenerated carriers in electrospun ceramic fiber photocatalysts by means of introducing heterostructure and defective composition are reviewed in this article. This review ends with a summary and some perspectives on the future directions of ceramic fiber photocatalysts.
Collapse
Affiliation(s)
- Yan Xing
- School of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China;
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Jing Cheng
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Heping Li
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Dandan Lin
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Yuting Wang
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Hui Wu
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
| | - Wei Pan
- State Key Lab of New Ceramic and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; (J.C.); (H.L.); (D.L.); (Y.W.); (H.W.)
- Correspondence: ; Tel.: +86-010-6277-2859
| |
Collapse
|
12
|
Chen R, Chen J, Gao X, Ao Y, Wang P. Probing the role of surface acid sites on the photocatalytic degradation of tetracycline hydrochloride over cerium doped CdS via experiments and theoretical calculations. Dalton Trans 2021; 50:16620-16630. [PMID: 34748622 DOI: 10.1039/d1dt02852a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface acid site regulation of photocatalysts is a promising strategy to improve their performance. Herein, surface acid sites of cadmium sulfide were rationally regulated by cerium doping, which resulted in significantly increased photocatalytic activity for tetracycline hydrochloride (TC-HCl) degradation. The generated Brønsted acid sites were verified to favor the adsorption of organic molecules because of their strong affinity. Meanwhile, Lewis acid sites acted as the active sites for C-C bond cleavage via a nucleophilic substitution process, which was testified by the Fukui function and electrostatic potential. Besides, Ce3+ doping suppressed the recombination of electron-hole pairs, which also boosted the performance of TC-HCl degradation. Moreover, the degradation pathway of TC-HCl was deduced based on theoretical calculations and HPLC-MS results. The toxicity of pollutants and intermediates was also evaluated. This work provided new insight into the rational design and preparation of highly efficient photocatalysts for environmental purification.
Collapse
Affiliation(s)
- Ran Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China. .,College of Life & Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| | - Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang road, Nanjing, 210098, China.
| |
Collapse
|
13
|
Yang ZZ, Zhang C, Zeng GM, Tan XF, Huang DL, Zhou JW, Fang QZ, Yang KH, Wang H, Wei J, Nie K. State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Chan H, Shi C, Wu Z, Sun S, Zhang S, Yu Z, He M, Chen G, Wan X, Tian J. Superhydrophilic three-dimensional porous spent coffee ground reduced palladium nanoparticles for efficient catalytic reduction. J Colloid Interface Sci 2021; 608:1414-1421. [PMID: 34742061 DOI: 10.1016/j.jcis.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022]
Abstract
The use of functional biodegradable wastes to treat environmental problems would create minimal extra burden to our environment. In this paper, we propose a sustainable and practical strategy to turn spent coffee ground (SCG) into a multifunctional palladium-loaded catalyst for water treatment instead of going into landfill as solid waste. Bleached delignified coffee ground (D-SCG) has a porous structure and a good capability to reduce Pd (II) to Pd (0). A large amount of nanocellulose is formed on the surface of SCG after bleaching by H2O2, which anchors and disperses the palladium nanoparticles (Pd NPs). The D-SCG loaded with Pd NPs (Pd-D-SCG) is superhydrophilic, which facilitates water transport and thus promotes efficient removal of organic pollutants dissolved in water. Pd-D-SCG exhibits excellent room temperature catalytic activity for the removal of 4-nitrophenol (4-NP) and methylene blue (MB) in water and shows good chemical stability and recyclability in water, with no obvious decrease even after five repeated cycles.
Collapse
Affiliation(s)
- Huifang Chan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Congcan Shi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhangxiong Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, PR China
| | - Shenghong Sun
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shaokai Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhaohui Yu
- YUTO Packaging Technology Co., Ltd, Shenzhen 518000, PR China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiaofang Wan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
15
|
Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63769-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Fu C, Xu B, Dong L, Zhai J, Wang X, Wang DY. Highly efficient BiVO 4single-crystal nanosheets with dual modification: phosphorus doping and selective Ag modification. NANOTECHNOLOGY 2021; 32:325701. [PMID: 33906165 DOI: 10.1088/1361-6528/abfc0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BiVO4, a visible-light response photocatalyst, has shown tremendous potential because of abundant raw material sources, good stability and low cost. There exist some limitations for further applicaitions due to poor capability to separate electron-hole pairs. In fact, a single-component modification strategy is barely adequate to obtain highly efficient photocatalytic performance. In this work, P substituted some of the V atoms from VO4oxoanions, namely P was doped into the V sites in the host lattice of BiVO4by a hydrothermal route. Meanwhile, Ag as an attractive and efficient electron-cocatalyst was selectively modified on the (010) facet of BiVO4nanosheets via facile photo-deposition. As a result, the obtained dually modified BiVO4sheets exhibited enhanced photocatalytic degradation property of methylene blue (MB). In detail, photocatalytic rate constant (k) was 2.285 min-1g-1, which was 2.78 times higher than pristine BiVO4nanosheets. Actually, P-doping favored the formation of O vacancies, led to more charge carriers, and facilitated photocatalytic reaction. On the other hand, metallic Ag loaded on (010) facet effectively transferred photogenerated electrons, which consequently helped electron-hole pairs separation. The present work may enlighten new thoughts for smart design and controllable synthesis of highly efficient photocatalytic materials.
Collapse
Affiliation(s)
- Can Fu
- IMDEA Materials Institute, E-28906 Getafe, Madrid, Spain
- E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Baoyun Xu
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Lingling Dong
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Jinguo Zhai
- State Key Laboratory of Polyolefins and Catalysis, Shanghai Engineering Research Center of Functional FR Materials, Shanghai Research Institute of Chemical Industry Co. Ltd, Shanghai, 200062, People's Republic of China
| | - Xuefei Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - De-Yi Wang
- IMDEA Materials Institute, E-28906 Getafe, Madrid, Spain
| |
Collapse
|
17
|
Li K, Chen J, Ao Y, Wang P. Preparation of a ternary g-C3N4-CdS/Bi4O5I2 composite photocatalysts with two charge transfer pathways for efficient degradation of acetaminophen under visible light irradiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118177] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Gao Y, Li X, Hu J, Fan W, Wang F, Xu D, Ding J, Bai H, Shi W. Ag-Pi/BiVO4 heterojunction with efficient interface carrier transport for photoelectrochemical water splitting. J Colloid Interface Sci 2020; 579:619-627. [DOI: 10.1016/j.jcis.2020.06.108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/12/2023]
|
19
|
Improved Photocatalytic Activity of g‐C
3
N
4
/ZnO: A Potential Direct Z‐Scheme Nanocomposite. ChemistrySelect 2020. [DOI: 10.1002/slct.202003166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|